ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic $alpha$-Cu$_2$V$_2$O$_7$

81   0   0.0 ( 0 )
 نشر من قبل Ruediger Klingeler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate magnetoelectric coupling and low-energy magnetic excitations in multiferroic $alpha$-Cu$_2$V$_2$O$_7$ by detailed thermal expansion, magnetostriction, specific heat and magnetization measurements in magnetic fields up to 15~T and by high-field/high-frequency electron spin resonance studies. Our data show negative thermal expansion in the temperature range $leq 200$~K under study. Well-developed anomalies associated with the onset of multiferroic order (canted antiferromagnetism with a significant magnetic moment and ferroelectricity) imply pronounced coupling to the structure. We detect anomalous entropy changes in the temperature regime up to $sim 80$~K which significantly exceed the spin entropy. Failure of Gruneisen scaling further confirms that several dominant ordering phenomena are concomitantly driving the multiferroic order. By applying external magnetic fields, anomalies in the thermal expansion and in the magnetization are separated. Noteworthy, the data clearly imply the development of a canted magnetic moment at temperatures above the structural anomaly. Low-field magnetostriction supports the scenario of exchange-striction driven multiferroicity. We observe low-energy magnetic excitations well below the antiferromagnetic gap, i.e., a ferromagnetic-type resonance branch associated with the canted magnetic moment arising from Dzyaloshinsii-Moriya interactions. The anisotropy parameter $tilde{D}=1.6(1)$~meV indicates a sizeable ratio of DM- and isotropic magnetic exchange.



قيم البحث

اقرأ أيضاً

We report $alpha$-Cu$_2$V$_2$O$_7$ to be an improper multiferroic with the simultaneous development of electric polarization and magnetization below $T_C$ = 35 K. The observed spontaneous polarization of magnitude 0.55 $mu$Ccm$^{-2}$ is highest among the copper based improper multiferroic materials. Our study demonstrates sizable amount of magneto-electric coupling below $T_C$ even with a low magnetic field. The theoretical calculations based on density functional theory (DFT) indicate magnetism in $alpha$-Cu$_2$V$_2$O$_7$ is a consequence of {em ferro-orbital} ordering driven by polar lattice distortion due to the unique pyramidal (CuO$_{5}$) environment of Cu. The spin orbit coupling (SOC) further stabilize orbital ordering and is crucial for magnetism. The calculations indicate that the origin of the giant ferroelectric polarization is primarily due to the symmetric exchange-striction mechanism and is corroborated by temperature dependent X-ray studies.
121 - N. Su , F.-Y. Li , Y. Y. Jiao 2019
Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_text{c}approx 70, text{K}}$ from the isotherms of magnetization $M(H)$ via an iteration process and the Kouvel-Fisher method. The critical exponents associated with the transition are determined as ${beta = 0.32(1)}$, ${gamma = 1.41(1)}$, and ${delta = 5.38}$. The validity of these critical exponents is further verified by scaling all the $M(H)$ data in the vicinity of $T_text{c}$ onto two universal curves in the plot of $M/|varepsilon|^beta$ versus $H/|varepsilon|^{beta+gamma}$, where ${varepsilon = T/T_text{c} -1}$. The obtained $beta$ and $gamma$ values show asymmetric behaviors on the ${T < T_text{c}}$ and the ${T > T_text{c}}$ sides, and are consistent with the predicted values of 3D Ising and cubic universality classes, respectively. This makes Lu$_2$V$_2$O$_7$ a rare example in which the critical behaviors associated with a ferromagnetic transition belong to different universality classes. We describe the observed criticality from the Ginzburg-Landau theory with the quartic cubic anisotropy that microscopically originates from the anti-symmetric Dzyaloshinskii-Moriya interaction as revealed by recent magnon thermal Hall effect and theoretical investigations.
We studied the novel multiferroic material Sr$_2$FeSi$_2$O$_7$, and found 3 absorption modes above the magnetic ordering transition temperature using time-domain terahertz spectroscopy. These absorption modes can be explained as the optical transitio ns between the spin-orbit coupling and crystal field split 3d$^6$ Fe$^{2+}$ ground state term in this material. Consideration of the compressed tetrahedral environment of the Fe$^{2+}$ site is crucial to understand the excitations. We point out, however, discrepancies between the single-site atomic picture and the experimental results.
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presenc e of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations above a spin gap of $Delta = 10.6$ meV at 1.5 K, a value consistent with the estimates extracted from magnetic susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first-principles.
The dynamical magnetic correlations in tbti, have been investigated using polarized inelastic neutron scattering. Dispersive excitations are observed, emerging from pinch points in reciprocal space and characterized by an anisotropic spectral weight. Anomalies in the crystal field and phonon excitation spectrum at Brillouin zone centers are also reported. These findings suggest that Coulomb phases, although they present a disordered ground state with dipolar correlations, allow the propagation of collective excitations. They also point out a strong spin-lattice coupling, which likely drives effective interactions between the $4f$ quadrupolar moments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا