ترغب بنشر مسار تعليمي؟ اضغط هنا

The formation and assembly history of the Milky Way revealed by its globular cluster population

133   0   0.0 ( 0 )
 نشر من قبل Diederik Kruijssen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the age-metallicity distribution of 96 Galactic globular clusters (GCs) to infer the formation and assembly history of the Milky Way (MW), culminating in the reconstruction of its merger tree. Based on a quantitative comparison of the Galactic GC population to the 25 cosmological zoom-in simulations of MW-mass galaxies in the E-MOSAICS project, which self-consistently model the formation and evolution of GC populations in a cosmological context, we find that the MW assembled quickly for its mass, reaching ${25,50}%$ of its present-day halo mass already at $z={3,1.5}$ and half of its present-day stellar mass at $z=1.2$. We reconstruct the MWs merger tree from its GC age-metallicity distribution, inferring the number of mergers as a function of mass ratio and redshift. These statistics place the MWs assembly $textit{rate}$ among the 72th-94th percentile of the E-MOSAICS galaxies, whereas its $textit{integrated}$ properties (e.g. number of mergers, halo concentration) match the median of the simulations. We conclude that the MW has experienced no major mergers (mass ratios $>$1:4) since $zsim4$, sharpening previous limits of $zsim2$. We identify three massive satellite progenitors and constrain their mass growth and enrichment histories. Two are proposed to correspond to Sagittarius (few $10^8~{rm M}_odot$) and the GCs formerly associated with Canis Major ($sim10^9~{rm M}_odot$). The third satellite has no known associated relic and was likely accreted between $z=0.6$-$1.3$. We name this enigmatic galaxy $textit{Kraken}$ and propose that it is the most massive satellite ($M_*sim2times10^9~{rm M}_odot$) ever accreted by the MW. We predict that $sim40%$ of the Galactic GCs formed ex-situ (in galaxies with masses $M_*=2times10^7$-$2times10^9~{rm M}_odot$), with $6pm1$ being former nuclear clusters.

قيم البحث

اقرأ أيضاً

As the remnants of stars with initial masses $lesssim$ 8 M$_{odot}$, white dwarfs contain valuable information on the formation histories of stellar populations. In this paper, we use deep, high-quality, u-band photometry from the Canada France Imagi ng Survey (CFIS), griz photometry from Pan-STARRS 1 (PS1), as well as proper motions from Gaia DR2, to select 25,156 white dwarf candidates over $sim$4500 deg$^2$ using a reduced proper motion diagram. We develop a new white dwarf population synthesis code that returns mock observations of the Galactic field white dwarf population for a given star formation history, while simultaneously taking into account the geometry of the Milky Way, survey parameters, and selection effects. We use this model to derive the star formation histories of the thin disk, thick disk, and stellar halo. Our results show that the Milky Way disk began forming stars (11.3 $pm$ 0.5) Gyr ago, with a peak rate of (8.8 $pm$ 1.4) M$_{odot}$yr$^{-1}$ at (9.8 $pm$ 0.4) Gyr, before a slow decline to a constant rate until the present day --- consistent with recent results suggesting a merging event with a satellite galaxy. Studying the residuals between the data and best-fit model shows evidence for a slight increase in star formation over the past 3 Gyr. We fit the local fraction of helium-atmosphere white dwarfs to be (21 $pm$ 3) %. Incorporating this methodology with data from future wide-field surveys such as LSST, Euclid, CASTOR, and WFIRST should provide an unprecedented view into the formation of the Milky Way at its earliest epoch through its white dwarfs.
Although originally conceived as primarily an extragalactic survey, the Sloan Digital Sky Survey (SDSS-I), and its extensions SDSS-II and SDSS-III, continue to have a major impact on our understanding of the formation and evolution of our host galaxy , the Milky Way. The sub-survey SEGUE: Sloan Extension for Galactic Exploration and Understanding, executed as part of SDSS-II, obtained some 3500 square degrees of additional ugriz imaging, mostly at lower Galactic latitudes, in order to better sample the disk systems of the Galaxy. Most importantly, it obtained over 240,000 medium-resolution spectra for stars selected to sample Galactocentric distances from 0.5 to 100 kpc. In combination with stellar targets from SDSS-I, and the recently completed SEGUE-2 program, executed as part of SDSS-III, the total sample of SDSS spectroscopy for Galactic stars comprises some 500,000 objects. The development of the SEGUE Stellar Parameter Pipeline has enabled the determination of accurate atmospheric parameter estimates for a large fraction of these stars. Many of the stars in this data set within 5 kpc of the Sun have sufficiently well-measured proper motions to determine their full space motions, permitting examination of the nature of much more distant populations represented by members that are presently passing through the solar neighborhood. Ongoing analyses of these data are being used to draw a much clearer picture of the nature of our galaxy, and to supply targets for detailed high-resolution spectroscopic follow-up with the worlds largest telescopes. Here we discuss a few highlights of recently completed and ongoing investigations with these data.
Using the VINTERGATAN cosmological zoom simulation, we explore the contributions of the in situ and accreted material, and the effect of galaxy interactions and mergers in the assembly of a Milky Way-like galaxy. We find that the initial growth phase of galaxy evolution, dominated by repeated major mergers, provides the necessary physical conditions for the assembly of a thick, kinematically hot disk populated by high-[$alpha$/Fe] stars, formed both in situ and in accreted satellite galaxies. We find that the diversity of evolutionary tracks followed by the simulated galaxy and its progenitors leads to very little overlap of the in situ and accreted populations for any given chemical composition. At a given age, the spread in [$alpha$/Fe] abundance ratio results from the diversity of physical conditions in VINTERGATAN and its satellites, with an enhancement in [$alpha$/Fe] found in stars formed during starburst episodes. Later, the cessation of the merger activity promotes the in situ formation of stars in the low-[$alpha$/Fe] regime, in a radially extended, thin and overall kinematically colder disk, thus establishing chemically bimodal thin and thick disks, in line with observations. We draw links between notable features in the [Fe/H] - [$alpha$/Fe] plane with their physical causes, and propose a comprehensive formation scenario explaining self-consistently, in the cosmological context, the main observed properties of the Milky Way.
We use recently derived ages for 61 Milky Way (MW) globular clusters (GCs) to show that their age-metallicity relation (AMR) can be divided into two distinct, parallel sequences at [Fe/H] $ga -1.8$. Approximately one-third of the clusters form an off set sequence that spans the full range in age ($sim 10.5$--13 Gyr), but is more metal rich at a given age by $sim 0.6$ dex in [Fe/H]. All but one of the clusters in the offset sequence show orbital properties that are consistent with membership in the MW disk. They are not simply the most metal-rich GCs, which have long been known to have disk-like kinematics, but they are the most metal-rich clusters at all ages. The slope of the mass-metallicity relation (MMR) for galaxies implies that the offset in metallicity of the two branches of the AMR corresponds to a mass decrement of 2 dex, suggesting host galaxy masses of $M_{*} sim 10^{7-8} msol$ for GCs that belong to the more metal-poor AMR. We suggest that the metal-rich branch of the AMR consists of clusters that formed in-situ in the disk, while the metal-poor GCs were formed in relatively low-mass (dwarf) galaxies and later accreted by the MW. The observed AMR of MW disk stars, and of the LMC, SMC and WLM dwarf galaxies are shown to be consistent with this interpretation, and the relative distribution of implied progenitor masses for the halo GC clusters is in excellent agreement with the MW subhalo mass function predicted by simulations. A notable implication of the bifurcated AMR, is that the identical mean ages and spread in ages, for the metal rich and metal poor GCs are difficult to reconcile with an in-situ formation for the latter population.
The all-sky Milky Way Star Clusters (MWSC) survey provides uniform and precise ages and other parameters for a variety of clusters in the Solar Neighbourhood. We construct the cluster age distribution, investigate its spatial variations, and discuss constraints on cluster formation scenarios of the Galactic disk during the last 5 Gyrs. Due to the spatial extent of the MWSC, we consider spatial variations of the age distribution along galactocentric radius $R_G$, and along $Z$-axis. For the analysis of the age distribution we use 2242 clusters, which all lie within roughly 2.5 kpc of the Sun. To connect the observed age distribution to the cluster formation history we build an analytical model based on simple assumptions on the cluster initial mass function and on the cluster mass-lifetime relation, fit it to the observations, and determine the parameters of the cluster formation law. Comparison with the literature shows that earlier results strongly underestimated the number of evolved clusters with ages $tgtrsim 100$ Myr. Recent studies based on all-sky catalogues agree better with our data, but still lack the oldest clusters with ages $tgtrsim 1$ Gyr. We do not observe a strong variation in the age distribution along $R_G$, though we find an enhanced fraction of older clusters ($t>1$ Gyr) in the inner disk. In contrast, the distribution strongly varies along $Z$. The high altitude distribution practically does not contain clusters with $t<1$ Gyr. With simple assumptions on the cluster formation history, cluster initial mass function and cluster lifetime we can reproduce the observations. Cluster formation rate and cluster lifetime are strongly degenerate, which does not allow us to disentangle different formation scenarios. In all cases the cluster formation rate is strongly declining with time, and the cluster initial mass function is very shallow at the high mass end. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا