ﻻ يوجد ملخص باللغة العربية
Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol.
We study finite-state controllers (FSCs) for partially observable Markov decision processes (POMDPs) that are provably correct with respect to given specifications. The key insight is that computing (randomised) FSCs on POMDPs is equivalent to - and
Partially Observable Markov Decision Process (POMDP) is widely used to model probabilistic behavior for complex systems. Compared with MDPs, POMDP models a system more accurate but solving a POMDP generally takes exponential time in the size of its s
In asynchronous games, Melli{`e}s proved that innocent strategies are positional: their behaviour only depends on the position, not the temporal order used to reach it. This insightful result shaped our understanding of the link between dynamic (i.e.
Quite some work in the ATL-tradition uses the differences between various types of strategies (positional, uniform, perfect recall) to give alternative semantics to the same logical language. This paper contributes to another perspective on strategy
We study the problem of policy synthesis for uncertain partially observable Markov decision processes (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a so-called uncertainty set, for instance in the form of probab