ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistent deformations of free massive field theories in the Stueckelberg formulation

43   0   0.0 ( 0 )
 نشر من قبل Sebastian Garcia-Saenz
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Cohomological techniques within the Batalin-Vilkovisky (BV) extension of the Becchi-Rouet-Stora-Tyutin (BRST) formalism have proved invaluable for classifying consistent deformations of gauge theories. In this work we investigate the application of this idea to massive field theories in the Stueckelberg formulation. Starting with a collection of free massive vectors, we show that the cohomological method reproduces the cubic and quartic vertices of massive Yang-Mills theory. In the same way, taking a Fierz-Pauli graviton on a maximally symmetric space as the starting point, we are able to recover the consistent cubic vertices of nonlinear massive gravity. The formalism further sheds light on the characterization of Stueckelberg gauge theories, by demonstrating for instance that the gauge algebra of such models is necessarily Abelian and that they admit a Born-Infeld-like formulation in which the action is simply a combination of the gauge-invariant structures of the free theory.

قيم البحث

اقرأ أيضاً

We study the relationship between three non-Abelian topologically massive gauge theories, viz. the naive non-Abelian generalization of the Abelian model, Freedman-Townsend model and the dynamical 2-form theory, in the canonical framework. Hamiltonian formulation of the naive non-Abelian theory is presented first. The other two non-Abelian models are obtained by deforming the constraints of this model. We study the role of the auxiliary vector field in the dynamical 2-form theory in the canonical framework and show that the dynamical 2-form theory cannot be considered as the embedded version of naive non-Abelian model. The reducibility aspect and gauge algebra of the latter models are also discussed.
86 - John Cardy 2018
We point out that the arguments of Zamolodchikov and others on the $Toverline T$ and similar deformations of two-dimensional field theories may be extended to the more general non-Lorentz invariant case, for example non-relativistic and Lifshitz-type theories. We derive results for the finite-size spectrum and $S$-matrix of the deformed theories.
95 - Denis Karateev , Simon Kuhn , 2019
We propose a new non-perturbative method for studying UV complete unitary quantum field theories (QFTs) with a mass gap in general number of spacetime dimensions. The method relies on unitarity formulated as positive semi-definiteness of the matrix o f inner products between asymptotic states (in and out) and states created by the action of local operators on the vacuum. The corresponding matrix elements involve scattering amplitudes, form factors and spectral densities of local operators. We test this method in two-dimensional QFTs by setting up a linear optimization problem that gives a lower bound on the central charge of the UV CFT associated to a QFT with a given mass spectrum of stable particles (and couplings between them). Some of our numerical bounds are saturated by known form factors in integrable theories like the sine-Gordon, E8 and O(N) models.
We compute the entanglement of purification (EoP) in a 2d free scalar field theory with various masses. This quantity measures correlations between two subsystems and is reduced to the entanglement entropy when the total system is pure. We obtain exp licit numerical values by assuming minimal gaussian wave functionals for the purified states. We find that when the distance between the subsystems is large, the EoP behaves like the mutual information. However, when the distance is small, the EoP shows a characteristic behavior which qualitatively agrees with the conjectured holographic computation and which is different from that of the mutual information. We also study behaviors of mutual information in purified spaces and violations of monogamy/strong superadditivity.
290 - Andrea Quadri 2006
We elucidate the geometry of the polynomial formulation of the non-abelian Stueckelberg mechanism. We show that a natural off-shell nilpotent BRST differential exists allowing to implement the constraint on the sigma field by means of BRST techniques . This is achieved by extending the ghost sector by an additional U(1) factor (abelian embedding). An important consequence is that a further BRST-invariant but not gauge-invariant mass term can be written for the non-abelian gauge fields. As a
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا