ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the nonperturbative contributions to the complex heavy-quark potential

123   0   0.0 ( 0 )
 نشر من قبل Yun Guo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we construct a simple model for the complex heavy quark potential which is defined through the Fourier transform of the static gluon propagator. Besides the hard thermal loop resummed contribution, the gluon propagator also includes a non-perturbative term induced by the dimension two gluon condensate. Within the framework of thermal field theory, the real and imaginary parts of the heavy quark potential are determined in a consistent way without resorting to any extra assumption as long as the exact form of the retarded/advanced gluon propagator is specified. The resulting potential model has the desired asymptotic behaviors and reproduces the data from lattice simulation reasonably well. By presenting a direct comparison with other complex potential models on the market, we find the one proposed in this work shows a significant improvement on the description of the lattice results, especially for the imaginary part of the potential, in a temperature region relevant to quarkonium studies.



قيم البحث

اقرأ أيضاً

265 - S.J. Huber , M.G. Schmidt 1999
The hot electroweak potential for small Higgs field values is argued to obtain contributions from a fluctuating gauge field background leading to confinement. The destabilization of F^2=0 and the crossover are discussed in our phenomenological approach, also based on lattice data.
We evaluate heavy-quark (HQ) transport properties in a Quark-Gluon Plasma (QGP) employing interaction potentials extracted from thermal lattice QCD. Within a Brueckner many-body scheme we calculate in-medium T-matrices for charm- and bottom-quark sca ttering off light quarks in the QGP. The interactions are dominated by attractive meson and diquark channels which support bound and resonance states up to temperatures of ~1.5 T_c. We apply pertinent drag and diffusion coefficients (supplemented by perturbative scattering off gluons) in Langevin simulations in an expanding fireball to compute HQ spectra and elliptic flow in sqrt{s_{NN}}=200 GeV Au-Au collisions. We find good agreement with semileptonic electron-decay spectra which supports our nonperturbative computation of the HQ diffusion coefficient, suggestive for a strongly coupled QGP.
We determine the hard-loop resummed propagator in an anisotropic QCD plasma in general covariant gauges and define a potential between heavy quarks from the Fourier transform of its static limit. We find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment.
164 - S.J. Huber , A. Laser , M. Reuter 1998
We discuss nonperturbative contributions to the 3-dimensional one-loop effective potential of the electroweak theory at high temperatures in the framework of the stochastic vacuum model. It assumes a gauge-field background with Gaussian correlations which leads to confinement. The instability of <F^2>=0 in Yang-Mills theory appears for small Higgs expectation value <phi^2> in an IR regularized form. The gauge boson propagator obtains a positive momentum-dependent ``diamagnetic effective (mass)^2 due to confinement effects and a negative one due to ``paramagnetic spin-spin interactions which are related to the <F^2>=0 instability. Numerical evaluation of an approximate effective potential containing these masses shows qualitatively the fading away of the first-order phase transition with increasing Higgs mass which was observed in lattice calculations. The crossover point can be roughly determined postulating that the effective phi^4 and phi^2 terms vanish there.
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon sel f-energy, which in the sequel gives the the effective gluon propagator. As an artifact of strong magnetic field approximation ($eB>>T^2$ and $eB>>m^2$), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meagre and becomes independent of temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark ($Q$) and anti-quark ($bar Q$) is obtained in a hot QCD medium in the presence of strong magnetic field by correcting both short and long range components of the potential in real-time formalism. It is found that the long range part of the quarkonium potential is affected much more by magnetic field as compared to the short range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind $Qbar Q$ together. For example, the $J/psi$ is dissociated at $eB sim$ 10 $m_pi^2$ and $Upsilon$ is dissociated at $eB sim$ 100 $m_pi^2$ whereas its excited states, $psi^prime$ and $Upsilon^prime$ are dissociated at smaller magnetic field $eB= m_pi^2$, $13 m_pi^2$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا