ترغب بنشر مسار تعليمي؟ اضغط هنا

Pricing Engine: Estimating Causal Impacts in Real World Business Settings

69   0   0.0 ( 0 )
 نشر من قبل Brian Quistorff
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the Pricing Engine package to enable the use of Double ML estimation techniques in general panel data settings. Customization allows the user to specify first-stage models, first-stage featurization, second stage treatment selection and second stage causal-modeling. We also introduce a DynamicDML class that allows the user to generate dynamic treatment-aware forecasts at a range of leads and to understand how the forecasts will vary as a function of causally estimated treatment parameters. The Pricing Engine is built on Python 3.5 and can be run on an Azure ML Workbench environment with the addition of only a few Python packages. This note provides high-level discussion of the Double ML method, describes the packages intended use and includes an example Jupyter notebook demonstrating application to some publicly available data. Installation of the package and additional technical documentation is available at $href{https://github.com/bquistorff/pricingengine}{github.com/bquistorff/pricingengine}$.



قيم البحث

اقرأ أيضاً

This paper studies a panel data setting where the goal is to estimate causal effects of an intervention by predicting the counterfactual values of outcomes for treated units, had they not received the treatment. Several approaches have been proposed for this problem, including regression methods, synthetic control methods and matrix completion methods. This paper considers an ensemble approach, and shows that it performs better than any of the individual methods in several economic datasets. Matrix completion methods are often given the most weight by the ensemble, but this clearly depends on the setting. We argue that ensemble methods present a fruitful direction for further research in the causal panel data setting.
This paper quantitatively reveals the state-of-the-art and state-of-the-practice AI systems only achieve acceptable performance on the stringent conditions that all categories of subjects are known, which we call closed clinical settings, but fail to work in real-world clinical settings. Compared to the diagnosis task in the closed setting, real-world clinical settings pose severe challenges, and we must treat them differently. We build a clinical AI benchmark named Clinical AIBench to set up real-world clinical settings to facilitate researches. We propose an open, dynamic machine learning framework and develop an AI system named OpenClinicalAI to diagnose diseases in real-world clinical settings. The fir
Estimating the Individual Treatment Effect from observational data, defined as the difference between outcomes with and without treatment or intervention, while observing just one of both, is a challenging problems in causal learning. In this paper, we formulate this problem as an inference from hidden variables and enforce causal constraints based on a model of four exclusive causal populations. We propose a new version of the EM algorithm, coined as Expected-Causality-Maximization (ECM) algorithm and provide hints on its convergence under mild conditions. We compare our algorithm to baseline methods on synthetic and real-world data and discuss its performances.
Social and professional networks affect labor market dynamics, knowledge diffusion and new business creation. To understand the determinants of how these networks are formed in the first place, we analyze a unique dataset of business cards exchanges among a sample of over 240,000 users of the multi-platform contact management and professional social networking tool for individuals Eight. We develop a structural model of network formation with strategic interactions, and we estimate users payoffs that depend on the composition of business relationships, as well as indirect business interactions. We allow heterogeneity of users in both observable and unobservable characteristics to affect how relationships form and are maintained. The models stationary equilibrium delivers a likelihood that is a mixture of exponential random graph models that we can characterize in closed-form. We overcome several econometric and computational challenges in estimation, by exploiting a two-step estimation procedure, variational approximations and minorization-maximization methods. Our algorithm is scalable, highly parallelizable and makes efficient use of computer memory to allow estimation in massive networks. We show that users payoffs display homophily in several dimensions, e.g. location; furthermore, users unobservable characteristics also display homophily.
This paper investigates the geometrical properties of real world games (e.g. Tic-Tac-Toe, Go, StarCraft II). We hypothesise that their geometrical structure resemble a spinning top, with the upright axis representing transitive strength, and the radi al axis, which corresponds to the number of cycles that exist at a particular transitive strength, representing the non-transitive dimension. We prove the existence of this geometry for a wide class of real world games, exposing their temporal nature. Additionally, we show that this unique structure also has consequences for learning - it clarifies why populations of strategies are necessary for training of agents, and how population size relates to the structure of the game. Finally, we empirically validate these claims by using a selection of nine real world two-player zero-sum symmetric games, showing 1) the spinning top structure is revealed and can be easily re-constructed by using a new method of Nash clustering to measure the interaction between transitive and cyclical strategy behaviour, and 2) the effect that population size has on the convergence in these games.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا