ﻻ يوجد ملخص باللغة العربية
We establish a formula for computing the unramified Brauer group of tame conic bundle threefolds in characteristic 2. The formula depends on the arrangement and residue double covers of the discriminant components, the latter being governed by Artin-Schreier theory (instead of Kummer theory in characteristic not 2). We use this to give new examples of threefold conic bundles defined over the integers that are not stably rational over the complex numbers.
We derive a formula for the unramified Brauer group of a general class of rationally connected fourfolds birational to conic bundles over smooth threefolds. We produce new examples of conic bundles over P^3 where this formula applies and which have n
Let $F$ be a field of characteristic 2 and let $X$ be a smooth projective quadric of dimension $ge 1$ over $F$. We study the unramified cohomology groups with 2-primary torsion coefficients of $X$ in degrees 2 and 3. We determine completely the kerne
We study the groups of biholomorphic and bimeromorphic automorphisms of conic bundles over certain compact complex manifolds of algebraic dimension zero.
A group $G$ is called Jordan if there is a positive integer $J=J_G$ such that every finite subgroup $mathcal{B}$ of $G$ contains a commutative subgroup $mathcal{A}subset mathcal{B}$ such that $mathcal{A}$ is normal in $mathcal{B}$ and the index $[mat
Let $k$ be a field finitely generated over the finite field $mathbb F_p$ of odd characteristic $p$. For any K3 surface $X$ over $k$ we prove that the prime to $p$ component of the cokernel of the natural map $Br(k)to Br(X)$ is finite.