ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyzing Traffic Delay at Unmanaged Intersections

140   0   0.0 ( 0 )
 نشر من قبل Changliu Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

At an unmanaged intersection, it is important to understand how much traffic delay may be caused as a result of microscopic vehicle interactions. Conventional traffic simulations that explicitly track these interactions are time-consuming. Prior work introduced an analytical traffic model for unmanaged intersections. The traffic delay at the intersection is modeled as an event-driven stochastic process, whose dynamics encode microscopic vehicle interactions. This paper studies the traffic delay in a two-lane intersection using the model. We perform rigorous analyses concerning the distribution of traffic delay under different scenarios. We then discuss the relationships between traffic delay and multiple factors such as traffic flow density, unevenness of traffic flows, temporal gaps between two consecutive vehicles, and the passing order.



قيم البحث

اقرأ أيضاً

With the emergence of autonomous vehicles, it is important to understand their impact on the transportation system. However, conventional traffic simulations are time-consuming. In this paper, we introduce an analytical traffic model for unmanaged in tersections accounting for microscopic vehicle interactions. The macroscopic property, i.e., delay at the intersection, is modeled as an event-driven stochastic dynamic process, whose dynamics encode the microscopic vehicle behaviors. The distribution of macroscopic properties can be obtained through either direct analysis or event-driven simulation. They are more efficient than conventional (time-driven) traffic simulation, and capture more microscopic details compared to conventional macroscopic flow models. We illustrate the efficiency of this method by delay analyses under two different policies at a two-lane intersection. The proposed model allows for 1) efficient and effective comparison among different policies, 2) policy optimization, 3) traffic prediction, and 4) system optimization (e.g., infrastructure and protocol).
The Internet of Vehicles (IoV) enables real-time data exchange among vehicles and roadside units and thus provides a promising solution to alleviate traffic jams in the urban area. Meanwhile, better traffic management via efficient traffic light cont rol can benefit the IoV as well by enabling a better communication environment and decreasing the network load. As such, IoV and efficient traffic light control can formulate a virtuous cycle. Edge computing, an emerging technology to provide low-latency computation capabilities at the edge of the network, can further improve the performance of this cycle. However, while the collected information is valuable, an efficient solution for better utilization and faster feedback has yet to be developed for edge-empowered IoV. To this end, we propose a Decentralized Reinforcement Learning at the Edge for traffic light control in the IoV (DRLE). DRLE exploits the ubiquity of the IoV to accelerate the collection of traffic data and its interpretation towards alleviating congestion and providing better traffic light control. DRLE operates within the coverage of the edge servers and uses aggregated data from neighboring edge servers to provide city-scale traffic light control. DRLE decomposes the highly complex problem of large area control. into a decentralized multi-agent problem. We prove its global optima with concrete mathematical reasoning. The proposed decentralized reinforcement learning algorithm running at each edge node adapts the traffic lights in real time. We conduct extensive evaluations and demonstrate the superiority of this approach over several state-of-the-art algorithms.
Autonomous driving at intersections is one of the most complicated and accident-prone traffic scenarios, especially with mixed traffic participants such as vehicles, bicycles and pedestrians. The driving policy should make safe decisions to handle th e dynamic traffic conditions and meet the requirements of on-board computation. However, most of the current researches focuses on simplified intersections considering only the surrounding vehicles and idealized traffic lights. This paper improves the integrated decision and control framework and develops a learning-based algorithm to deal with complex intersections with mixed traffic flows, which can not only take account of realistic characteristics of traffic lights, but also learn a safe policy under different safety constraints. We first consider different velocity models for green and red lights in the training process and use a finite state machine to handle different modes of light transformation. Then we design different types of distance constraints for vehicles, traffic lights, pedestrians, bicycles respectively and formulize the constrained optimal control problems (OCPs) to be optimized. Finally, reinforcement learning (RL) with value and policy networks is adopted to solve the series of OCPs. In order to verify the safety and efficiency of the proposed method, we design a multi-lane intersection with the existence of large-scale mixed traffic participants and set practical traffic light phases. The simulation results indicate that the trained decision and control policy can well balance safety and tracking performance. Compared with model predictive control (MPC), the computational time is three orders of magnitude lower.
Based on game theory and dynamic Level-k model, this paper establishes an intelligent traffic control method for intersections, studies the influence of multi-agent vehicle joint decision-making and group behavior disturbance on system state. The sim ulation results show that this method has a good performance when there are more vehicles or emergency vehicles have higher priority.
Gamma-ray spectral data were collected from sensors mounted to traffic signals around Northern Virginia. The data were collected over a span of approximately fifteen months. A subset of the data were analyzed manually and subsequently used to train m achine-learning models to facilitate the evaluation of the remaining 50k anomalous events identified in the dataset. We describe the analysis approach used here and discuss the results in terms of radioisotope classes and frequency patterns over day-of-week and time-of-day spans. Data from this work has been archived and is available for future and ongoing research applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا