ترغب بنشر مسار تعليمي؟ اضغط هنا

44 New & Known M Dwarf Multiples In The SDSS-III/APOGEE M Dwarf Ancillary Science Sample

70   0   0.0 ( 0 )
 نشر من قبل Jacob Skinner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Binary stars make up a significant portion of all stellar systems. Consequently, an understanding of the bulk properties of binary stars is necessary for a full picture of star formation. Binary surveys indicate that both multiplicity fraction and typical orbital separation increase as functions of primary mass. Correlations with higher order architectural parameters such as mass ratio are less well constrained. We seek to identify and characterize double-lined spectroscopic binaries (SB2s) among the 1350 M dwarf ancillary science targets with APOGEE spectra in the SDSS-III Data Release 13. We measure the degree of asymmetry in the APOGEE pipeline cross-correlation functions (CCFs), and use those metrics to identify a sample of 44 high-likelihood candidate SB2s. At least 11 of these SB2s are known, having been previously identified by Deshapnde et al, and/or El Badry et al. We are able to extract radial velocities (RVs) for the components of 36 of these systems from their CCFs. With these RVs, we measure mass ratios for 29 SB2s and 5 SB3s. We use Bayesian techniques to fit maximum likelihood (but still preliminary) orbits for 4 SB2s with 8 or more distinct APOGEE observations. The observed (but incomplete) mass ratio distribution of this sample rises quickly towards unity. Two-sided Kolmogorov-Smirnov tests and probabilities of 18.3% and 18.7%, demonstrating that the mass ratio distribution of our sample is consistent with those measured by Pourbaix et al. and Fernandez et al., respectively.

قيم البحث

اقرأ أيضاً

We present spectroscopic determinations of the effective temperatures, surface gravities and metallicities for 21 M-dwarfs observed at high-resolution (R $sim$ 22,500) in the textit{H}-band as part of the SDSS-IV APOGEE survey. The atmospheric parame ters and metallicities are derived from spectral syntheses with 1-D LTE plane parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H$_{2}$O and FeH molecular line lists. Our sample range in $T_{rm eff}$ from $sim$ 3200 to 3800K, where eleven stars are in binary systems with a warmer (FGK) primary, while the other 10 M-dwarfs have interferometric radii in the literature. We define an $M_{K_{S}}$--Radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically-derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset towards smaller values, with $Delta$ = -0.01 $pm$ 0.02 $R{star}$/$R_{odot}$. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by $sim$5-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M-dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, shows excellent agreement, with a mean difference of [Fe/H](M-dwarf - FGK primary) = +0.04 $pm$ 0.18 dex, confirming the APOGEE metallicity scale derived here for M-dwarfs.
We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotat ional velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and AO imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution H-band APOGEE spectra provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and RVs for over 1400 stars spanning spectral types of M0-L0, providing the largest set of NIR M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m/s for bright M dwarfs. We present preliminary results of this telluric modeling technique in this paper.
418 - Eric J. Hilton 2010
We have identified 63 flares on M dwarfs from the individual component spectra in the Sloan Digital Sky Survey using a novel measurement of emission line strength called the Flare Line Index. Each of the ~38,000 M dwarfs in the SDSS low mass star spe ctroscopic sample of West et al. was observed several times (usually 3-5) in exposures that were typically 9-25 minutes in duration. Our criteria allowed us to identify flares that exhibit very strong H-alpha and H-beta emission line strength and/or significant variability in those lines throughout the course of the exposures. The flares we identified have characteristics consistent with flares observed by classical spectroscopic monitoring. The flare duty cycle for the objects in our sample is found to increase from 0.02% for early M dwarfs to 3% for late M dwarfs. We find that the flare duty cycle is larger in the population near the Galactic plane and that the flare stars are more spatially restricted than the magnetically active but non-flaring stars. This suggests that flare frequency may be related to stellar age (younger stars are more likely to flare) and that the flare stars are younger than the mean active population.
Orbital monitoring of M-type binaries is essential for constraining their fundamental properties. This is particularly useful in young systems, where the extended pre-main sequence evolution can allow for precise isochronal dating. Here, we present t he continued astrometric monitoring of the more than 200 binaries of the AstraLux Large Multiplicity Survey, building both on our previous work, archival data, and new astrometric data spanning the range of 2010-2012. The sample is very young overall -- all included stars have known X-ray emission, and a significant fraction (18%) of them have recently also been identified as members of young moving groups in the Solar neighborhood. We identify ~30 targets that both have indications of being young and for which an orbit either has been closed or appears possible to close in a reasonable timeframe (a few years to a few decades). One of these cases, GJ 4326, is however identified as probably being substantially older than has been implied from its apparent moving group membership, based on astrometric and isochronal arguments. With further astrometric monitoring, these targets will provide a set of empirical isochrones, against which theoretical isochrones can be calibrated, and which can be used to evaluate the precise ages of nearby young moving groups.
We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([Fe/H]=+0.25 $pm$ 0.10) M4 dwarf with three transiting plan ets, and Kepler-446 is a metal-poor ([Fe/H]=-0.30 $pm$ 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar to GJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely-rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kepler-445, Kepler-446 and Kepler-42, and isolating all mid-M dwarf stars observed by Kepler with the precision necessary to detect similar systems, we calculate that 21 $^{+7}_{-5}$ % of mid-M dwarf stars host compact multiples (multiple planets with periods of less than 10 days) for a wide range of metallicities. We suggest that the inferred planet masses for these systems support highly efficient accretion of protoplanetary disk metals by mid-M dwarf protoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا