ترغب بنشر مسار تعليمي؟ اضغط هنا

A Persistent Disk Wind in GRS 1915+105 with NICER

430   0   0.0 ( 0 )
 نشر من قبل Joseph Neilsen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The bright, erratic black hole X-ray binary GRS 1915+105 has long been a target for studies of disk instabilities, radio/infrared jets, and accretion disk winds, with implications that often apply to sources that do not exhibit its exotic X-ray variability. With the launch of NICER, we have a new opportunity to study the disk wind in GRS 1915+105 and its variability on short and long timescales. Here we present our analysis of 39 NICER observations of GRS 1915+105 collected during five months of the mission data validation and verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the detection of strong Fe XXVI in 32 (>80%) of these observations, with another four marginal detections; Fe XXV is less common, but both likely arise in the well-known disk wind. We explore how the properties of this wind depends on broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio, and fractional RMS variability. The trends with count rate and RMS are consistent with an average wind column density that is fairly steady between observations but varies rapidly with the source on timescales of seconds. The line dependence on spectral hardness echoes known behavior of disk winds in outbursts of Galactic black holes; these results clearly indicate that NICER is a powerful tool for studying black hole winds.

قيم البحث

اقرأ أيضاً

Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the $rho$ class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. T he source shows 50 sec limit cycle oscillations. By including new information provided by the reflection spectrum, and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ~10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500-5000 km/s, and possibly two more with velocities reaching 20,000 km/s (~0.06 c). The column densities are ~5e22 cm$^{-2}$. An upper limit to the wind response time of 2 sec is measured, implying a launch radius of <6e10 cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290 - 1300 rg from the black hole. Both datasets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
134 - J. M. Miller 2016
We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lowe r sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk, and B ~ 10^(4-5) Gauss if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model (Shakura & Sunyaev 1973). We discuss these results in terms of fundamental disk physics and black hole accretion modes.
245 - J. Neilsen 2020
After 26 years in outburst, the black hole X-ray binary GRS 1915+105 dimmed considerably in early 2018; its flux dropped sharply in mid-2019, and it has remained faint ever since. This faint period, the obscured state, is punctuated by occasional X-r ay flares, many of which have been observed by NICER as part of our regular monitoring program. Here we present detailed time-resolved spectroscopy of one bright flare, whose spectrum shows evidence of high column density partial covering absorption and extremely deep absorption lines (equivalent widths over 100 eV in some cases). We study the time-dependent ionization of the obscuring gas with XSTAR, ultimately attributing the absorption to a radially-stratified absorber of density 1e12-1e13 cm^-3 at a ~few x 1e11 cm from the black hole. We argue that a vertically-extended outer disk could explain this obscuration. We discuss several scenarios to explain the obscured state, including massive outflows, an increase in the mass accretion rate, and changes in the outer disk that herald the approach of quiescence, but none are entirely satisfactory. Alternative explanations, such as obscuration by the accretion stream impact point, may be testable with current or future data.
86 - J. L. Blum 2009
GRS 1915+105 harbors one of the most massive known stellar black holes in the Galaxy. In May 2007, we observed GRS 1915+105 for 117 ksec in the low/hard state using Suzaku. We collected and analyzed the data with the HXD/PIN and XIS cameras spanning the energy range from 2.3-55 keV. Fits to the spectra with simple models reveal strong disk reflection through an Fe K emission line and a Compton back-scattering hump. We report constraints on the spin parameter of the black hole in GRS 1915+105 using relativistic disk reflection models. The model for the soft X-ray spectrum (i.e. < 10 keV) suggests a/M = 0.56(2) and excludes zero spin at the 4 sigma level of confidence. The model for the full broadband spectrum suggests that the spin may be higher, a/M = 0.98(1) (1 sigma confidence), and again excludes zero spin at the 2 sigma level of confidence. We discuss these results in the context of other spin constraints and inner disk studies in GRS 1915+105.
Most models of the low frequency quasi periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs) explain the dynamical properties of those QPOs. On the other hand, in recent years reverberation models that assume a lamp-post geometry have been successfull in explaining the energy-dependent time lags of the broad-band noise component in stellar mass black-holes and active galactic nuclei. We have recently shown that Comptonisation can explain the spectral-timing properties of the kilo-hertz (kHz) QPOs observed in neutron star (NS) LMXBs. It is therefore worth exploring whether the same family of models would be as successful in explaining the low-frequency QPOs. In this work, we use a Comptonisation model to study the frequency dependence of the phase lags of the type-C QPO in the BH LMXB GRS 1915+105. The phase lags of the QPO in GRS 1915+105 make a transition from hard to soft at a QPO frequency of around 1.8 Hz. Our model shows that at high QPO frequencies a large corona of ~ 100-150 R_g covers most of the accretion disc and makes it 100% feedback dominated, thus producing soft lags. As the observed QPO frequency decreases, the corona gradually shrinks down to around 3-17 R_g, and at 1.8 Hz feedback onto the disc becomes inefficient leading to hard lags. We discuss how changes in the accretion geometry affect the timing properties of the type-C QPO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا