ﻻ يوجد ملخص باللغة العربية
We discuss the formulation of classical field theoretical models on $n$-dimensional noncommutative space-time defined by a generic associative star product. A simple procedure for deriving conservation laws is presented and applied to field theories in noncommutative space-time to obtain local conservation laws (for the electric charge and for the energy-momentum tensor of free fields) and more generally an energy-momentum balance equation for interacting fields. For free field models an analogy with the damped harmonic oscillator in classical mechanics is pointed out, which allows us to get a physical understanding for the obtained conservation laws. To conclude, the formulation of field theories on curved noncommutative space is addressed.
In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorent
The fuzzy disc is a discretization of the algebra of functions on the two dimensional disc using finite matrices which preserves the action of the rotation group. We define a $varphi^4$ scalar field theory on it and analyze numerically for three diff
We continue our study of effective field theory via homotopy transfer of $L_infty$-algebras, and apply it to tree-level non-Wilsonian effective actions of the kind discussed by Sen in which the modes integrated out are comparable in mass to the modes
We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are backgrou
The expectation values of energy density and pressure of a quantum field inside a wedge-shaped region appear to violate the expected relationship between torque and total energy as a function of angle. In particular, this is true of the well-known De