ترغب بنشر مسار تعليمي؟ اضغط هنا

R&D studies on eco-friendly gas mixtures for the ALICE Muon Identifier

372   0   0.0 ( 0 )
 نشر من قبل Antonio Bianchi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Antonio Bianchi




اسأل ChatGPT حول البحث

Resistive Plate Chambers (RPCs), used for the Muon Spectrometer of the ALICE experiment at CERN LHC, are currently operated in maxi-avalanche mode with a low threshold value and without amplification in the front-end electronics. RPC detectors have shown a good operation stability with the current gas mixture during the entire Run 1 (2010$-$2013) and the ongoing Run 2 (2015$-$2018) at the LHC. The gas mixture is made up of $C_{2}H_{2}F_{4}$, $SF_{6}$ and $iC_{4}H_{10}$. Since the first two gases have high Global Warming Potentials (GWPs), there is the risk that they will be phased out of production in the next years, due to the recent restrictions and regulations of the European Union. Therefore, finding a new eco-friendly gas mixture has become extremely important in order to reduce the emissions of greenhouse gases. In addition, the present $iC_{4}H_{10}$ contribution makes the current gas mixture flammable. Non-flammable components, or at least in non-flammable concentrations, would be advisable to make the operation of detectors simpler and safer. In order to identify a gas mixture suited to cope with the requirements of the ALICE Muon Identifier in the forthcoming High-Luminosity runs, a dedicated experimental set-up has been used to carry out R&D studies on promising gas mixtures with small-size RPCs. Hydrofluoroolefins ($HFOs$) are appropriate candidates to replace the $C_{2}H_{2}F_{4}$ thanks to their very low GWPs, especially $HFO1234ze$ which is not flammable at room temperature. Several tests on $HFO$-based mixtures with addition of various gases are ongoing and encouraging results have already been obtained. Furthermore, the use of $CO_{2}$ as a quencher has been studied as it might represent a valid solution to avoid flammability of the mixture. Finally, medium-term stability of detectors exposed to the cosmic-ray flux will be shown in this paper.



قيم البحث

اقرأ أيضاً

Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.
257 - G. Proto , G. Aielli 2020
The ATLAS RPC standard mixture, mainly based on C$_{2}$H$_{2}$F$_{4}$, has a high Global Warming Potential (GWP) and therefore the search for RPC eco friendly gases is mandatory. In this work we present the results on the detector performances in ter ms of efficiency, prompt and ionic charge, with different gas mixtures.
The Multigap Resistive Plate Chambers (MRPC) are used as a timing detector in several particle physics and cosmic ray experiments. The gas mixture of MRPC at current experiments is a mixture containing $rm C_2F_4H_2$ and in some cases $rm SF_6$. $rm C_2F_4H_2$ and $rm SF_6$ have a Global Warming Potential (GWP) of 1430 and 23900 respectively, therefore they are classified as greenhouse gases. The studies to reduce the amount of emission of the greenhouse gas in high energy experiments are underway; the present contribution has been performed as part of this effort. The results have been obtained from the beam test of a small MRPC which has 6 gaps of 220 $mu$m and an sensitive area of 20 $times$ 20 cm$^2$. It has been operated with the ecological HFO-1234ze gas ($rm C_3F_4H_2$), and with the $rm C_2F_4H_2/SF_6$ mixture. We have found that the ecological gas can substitute for the $rm C_2F_4H_2$-based gas mixture without significantly compromising the current level of performance.
The muon identification system of the ALICE experiment at the CERN LHC is based on Resistive Plate Chamber (RPC) detectors. These RPCs are operated in the so-called maxi-avalanche mode with a gas mixture made of tetrafluoroethane (C$_{2}$H$_{2}$F$_{4 }$), sulfur hexafluoride (SF$_{6}$) and isobutane (i-C$_{4}$H$_{10}$). All of these components are greenhouse gases: in particular, the first two gases are already phasing out of production, due to recent European Union regulations, and their cost is progressively increasing. Therefore, finding a new eco-friendly gas mixture has become extremely important in order to reduce the impact of the RPC operation on the environment, and for economic reasons. Due to the similar chemical structure, hydrofluoroolefins appear appropriate candidates to replace C$_{2}$H$_{2}$F$_{4}$ thanks to their very low GWPs, especially tetrafluoropropene (C$_{3}$H$_{2}$F$_{4}$) with the trade name HFO1234ze. In order to identify an eco-friendly gas mixture fulfilling the requirements for operation in the ALICE environment in the coming years, a dedicated experimental set-up has been built to carry out R&D studies on promising gas mixtures. Measurements have been performed with a small-size RPC equipped with the front-end electronics, providing signal amplification, developed for ALICE operation at high luminosity after the LHC Long Shutdown 2. HFO1234ze-based mixtures with the addition of CO$_{2}$ are discussed in this paper as well as the role of i-C$_{4}$H$_{10}$ and SF$_{6}$ as quenchers in such mixtures.
The ALICE muon trigger (MTR) system consists of 72 Resistive Plate Chamber (RPC) detectors arranged in two stations, each composed of two planes with 18 RPCs per plane. The detectors are operated in maxi-avalanche mode using a mixture of 89.7% C$_2$H $_2$F$_4$, 10% i-C$_4$H$_{10}$ and 0.3% SF$_6$. A number of detector performance indicators, such as efficiency and dark current, have been monitored over time throughout the LHC Run2 (2015-18). While the efficiency showed very good stability, a steady increase in the absorbed dark current was observed. Since the end of 2018, the LHC has entered a phase of long shutdown, during which the ALICE experiment will be upgraded to cope with the next phase of data taking, expected in 2021. The MTR is undergoing a major upgrade of the front-end and readout electronics, and will change its functionalities, becoming a Muon Identifier. Only the replacement of the most irradiated RPCs is planned during the upgrade. It is therefore important to perform dedicated studies to gain further insights into the status of the detector. In particular, two RPCs were flushed with pure Ar gas for a prolonged period of time and a plasma was created by fully ionizing the gas. The output gas was analyzed using a Gas Chromatograph combined with a Mass Spectrometer and the possible presence of fluorinated compounds originating from the interaction of the plasma with the inner surfaces of the detector has been assessed using an Ion-Selective Electrode station. This contribution will include a detailed review of the ALICE muon RPC performance at the LHC. The procedure and results of the argon plasma test, described above, are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا