ﻻ يوجد ملخص باللغة العربية
Transiting exoplanets in young open clusters present opportunities to study how exoplanets evolve over their lifetimes. Recently, significant progress detecting transiting planets in young open clusters has been made with the K2 mission, but so far all of these transiting cluster planets orbit close to their host stars, so planet evolution can only be studied in a high-irradiation regime. Here, we report the discovery of a long-period planet candidate, called HD 283869 b, orbiting a member of the Hyades cluster. Using data from the K2 mission, we detected a single transit of a super-Earth-sized (1.96 +/- 0.12 R_earth) planet candidate orbiting the K-dwarf HD 283869 with a period longer than 72 days. Since we only detected a single transit event, we cannot validate HD 283869 b with high confidence, but our analysis of the K2 images, archival data, and follow-up observations suggests that the source of the event is indeed a transiting planet. We estimated the candidates orbital parameters and find that if real, it has a period P~100 days and receives approximately Earth-like incident flux, giving the candidate a 71% chance of falling within the circumstellar habitable zone. If confirmed, HD 283869 b would have the longest orbital period, lowest incident flux, and brightest host star of any known transiting planet in an open cluster, making it uniquely important to future studies of how stellar irradiation affects planetary evolution.
Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the ~800 Myr old Pra
We describe a super-Earth-size ($2.30pm0.15R_{oplus}$) planet transiting an early K-type dwarf star in the Campaign 4 field observed by the K2 mission. The host star, EPIC 210363145, was identified as a member of the approximately 120-Myr-old Pleiade
We confirm and characterize a close-in ($P_{rm{orb}}$ = 5.425 days), super-Neptune sized ($5.04^{+0.34}_{-0.37}$ Earth radii) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main sequence (11 Myr-old) star in the Upper Scorpiu
Transiting planets in nearby young clusters offer the opportunity to study the atmospheres and dynamics of planets during their formative years. To this end, we focused on K2-25b -- a close-in ($P$=3.48 days), Neptune-sized exoplanet orbiting a M4.5
We obtained high-resolution infrared spectroscopy and short-cadence photometry of the 600-800 Myr Praesepe star K2-100 during transits of its 1.67-day planet. This Neptune-size object, discovered by the NASA K2 mission, is an interloper in the desert