ﻻ يوجد ملخص باللغة العربية
In this paper, we extend the framework of improved version of simplified method to take into account the tensor contribution ($i$SMT) and propose AQCM-T, tensor version of antisymmetrized quasi cluster model (AQCM). Although AQCM-T is phenomenological, we can treat the $^3S$-$^3D$ coupling in the deuteron-like $T=0$ $NN$-pair induced by the tensor interaction in a very simplified way, which allows us to proceed to heavier nuclei. Also we propose a new effective interaction, V2m, where the triplet-even channel of the Volkov No.2 interaction is weakened to 60% so as to reproduce the binding energy of $^4$He after including the tensor term of a realistic interaction. Using AQCM-T and the new interaction, the significant tensor contribution in $^4$He is shown, which is almost comparable the central interaction, where $D$-state mixes by 8% to the major $S$-state. The AQCM-T model with the new interaction is also applied to $^8$Be. It is found that the tensor suppression gives significant contribution to the short-range repulsion between two {alpha} clusters.
We apply tensor version of antisymmetrized quasi cluster model (AQCM-T) to 4He and 8Be while focusing on the NN correlations in alpha clusters. We adopt the NN interactions including realistic ones containing a repulsive core for the central part in
We study $^5$He variationally as the first $p$-shell nucleus in the tensor-optimized antisymmetrized molecular dynamics (TOAMD) using the bare nucleon--nucleon interaction without any renormalization. In TOAMD, the central and tensor correlation oper
We treat the tensor correlation in antisymmetrized molecular dynamics (AMD) including large-relative-momentum components among nucleon pairs for finite nuclei. The tensor correlation is described by using large imaginary centroid vectors of Gaussian
The possibility of the $^8$He and $^{9}$Li clusters in atomic nuclei is discussed. Until now most of the clusters in the conventional models have been limited to the closures of the three-dimensional harmonic oscillators, such as $^4$He, $^{16}$O, an
We propose a new approach to probe the spatial extension of the valence neutron orbital in the $^{9}$Be nucleus via the ${}^{9}$Be($p,pn$)${}^{8}$Be knockout reaction. This property of the nuclear molecular orbital has not been established in previou