ﻻ يوجد ملخص باللغة العربية
Measurements of the forward-backward asymmetry in neutral-current Drell-Yan di-lepton production have primarily been used for determinations of the weak mixing angle $theta_W$. We observe that, unlike the case of Run-I of the Large Hadron Collider (LHC Run-I), for the first time at the LHC Run-II the reconstructed forward-backward asymmetry has the capability of placing useful constraints on the determination of the parton distribution functions (PDFs). By examining the statistical and the PDF uncertainties on the reconstructed forward-backward asymmetry, we investigate its potential for disentangling the flavour content of quark and antiquark PDFs. Access to the valence/sea $u$-quark and to the sea up-type antiquark PDFs, in particular, may be gained by the appropriate use of selection cuts in the rapidity of the emerging lepton pair in regions both near the $Z$-boson peak and away from it, in a manner complementary, though more indirect, to the case of the charged-current asymmetry. We study the extension of these results for the planned high-luminosity (HL) LHC.
We study the impact of the inclusion of Neutral Current (NC) DY data from LHC mapped in the Forward-Backward Asymmetry ($A_{rm FB}$) observable on PDF uncertainties, using the open source platform texttt{xFitter}. We find that $A_{rm FB}$ enables new
Non-perturbative QCD effects from Parton Distribution Functions (PDFs) may be constrained by using high-statistics Large Hadron Collider (LHC) data. Drell-Yan (DY) measurements in the Charged Current (CC) case provide one of the primary means to do t
We investigate the impact of high-statistics Drell-Yan (DY) measurements at the LHC on the study of non-perturbative QCD effects from parton distribution functions (PDF). We present the results of a PDF profiling analysis based on the neutral-current
Using the most general effective Hamiltonian comprising scalar,vector and tensor type interactions, we have written the branching ratio, the forward-backward (FB) asymmetry and the normalized FB asymmetry as functions of the new Wilson coefficients.
This article proposes a novel method for unbiased PDF updating by using the forward-backward asymmetry $(A_{FB})$ in the Drell-Yan $pp rightarrow Z/gamma^{*} rightarrow ell^+ell^-$ process. The $A_{FB}$ spectrum, as a function of the dilepton mass, i