ترغب بنشر مسار تعليمي؟ اضغط هنا

On the complexity of Borel equivalence relations with some countability property

103   0   0.0 ( 0 )
 نشر من قبل Dominique Lecomte
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Dominique Lecomte




اسأل ChatGPT حول البحث

We study the class of Borel equivalence relations under continuous reducibility. In particular , we characterize when a Borel equivalence relation with countable equivalence classes is $Sigma$ 0 $xi$ (or $Pi$ 0 $xi$). We characterize when all the equivalence classes of such a relation are $Sigma$ 0 $xi$ (or $Pi$ 0 $xi$). We prove analogous results for the Borel equivalence relations with countably many equivalence classes. We also completely solve these two problems for the first two ranks. In order to do this, we prove some extensions of the Louveau-Saint Raymond theorem which itself generalized the Hurewicz theorem characterizing when a Borel subset of a Polish space is G $delta$ .



قيم البحث

اقرأ أيضاً

Computable reducibility is a well-established notion that allows to compare the complexity of various equivalence relations over the natural numbers. We generalize computable reducibility by introducing degree spectra of reducibility and bi-reducibil ity. These spectra provide a natural way of measuring the complexity of reductions between equivalence relations. We prove that any upward closed collection of Turing degrees with a countable basis can be realised as a reducibility spectrum or as a bi-reducibility spectrum. We show also that there is a reducibility spectrum of computably enumerable equivalence relations with no countable basis and a reducibility spectrum of computably enumerable equivalence relations which is downward dense, thus has no basis.
The complexity of equivalence relations has received much attention in the recent literature. The main tool for such endeavour is the following reducibility: given equivalence relations $R$ and $S$ on natural numbers, $R$ is computably reducible to $ S$ if there is a computable function $f colon omega to omega$ that induces an injective map from $R$-equivalence classes to $S$-equivalence classes. In order to compare the complexity of equivalence relations which are computable, researchers considered also feasible variants of computable reducibility, such as the polynomial-time reducibility. In this work, we explore $mathbf{Peq}$, the degree structure generated by primitive recursive reducibility on punctual equivalence relations (i.e., primitive recursive equivalence relations with domain $omega$). In contrast with all other known degree structures on equivalence relations, we show that $mathbf{Peq}$ has much more structure: e.g., we show that it is a dense distributive lattice. On the other hand, we also offer evidence of the intricacy of $mathbf{Peq}$, proving, e.g., that the structure is neither rigid nor homogeneous.
We examine the degree structure $mathbf{ER}$ of equivalence relations on $omega$ under computable reducibility. We examine when pairs of degrees have a join. In particular, we show that sufficiently incomparable pairs of degrees do not have a join bu t that some incomparable degrees do, and we characterize the degrees which have a join with every finite equivalence relation. We show that the natural classes of finite, light, and dark degrees are definable in $mathbf{ER}$. We show that every equivalence relation has continuum many self-full strong minimal covers, and that $mathbf{d}oplus mathbf{Id_1}$ neednt be a strong minimal cover of a self-full degree $mathbf{d}$. Finally, we show that the theory of the degree structure $mathbf{ER}$ as well as the theories of the substructures of light degrees and of dark degrees are each computably isomorphic with second order arithmetic.
109 - Tomasz Rzepecki 2018
We study strong types and Galois groups in model theory from a topological and descriptive-set-theoretical point of view, leaning heavily on topological dynamical tools. More precisely, we give an abstract (not model theoretic) treatment of problems related to cardinality and Borel cardinality of strong types, quotients of definable groups and related objecets, generalising (and often improving) essentially all hitherto known results in this area. In particular, we show that under reasonable assumptions, strong type spaces are locally quotients of compact Polish groups. It follows that they are smooth if and only if they are type-definable, and that a quotient of a type-definable group by an analytic subgroup is either finite or of cardinality at least continuum.
We generalise the main theorems from the paper The Borel cardinality of Lascar strong types by I. Kaplan, B. Miller and P. Simon to a wider class of bounded invariant equivalence relations. We apply them to describe relationships between fundamental properties of bounded invariant equivalence relations (such as smoothness or type-definability) which also requires finding a series of counterexamples. Finally, we apply the generalisation mentioned above to prove a conjecture from a paper by the first author and J. Gismatullin, showing that the key technical assumption of the main theorem (concerning connected components in definable group extensions) from that paper is not only sufficient but also necessary to get the conclusion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا