ﻻ يوجد ملخص باللغة العربية
In this paper we prove some results on sum-product estimates over arbitrary finite fields. More precisely, we show that for sufficiently small sets $Asubset mathbb{F}_q$ we have [|(A-A)^2+(A-A)^2|gg |A|^{1+frac{1}{21}}.] This can be viewed as the ErdH{o}s distinct distances problem for Cartesian product sets over arbitrary finite fields. We also prove that [max{|A+A|, |A^2+A^2|}gg |A|^{1+frac{1}{42}}, ~|A+A^2|gg |A|^{1+frac{1}{84}}.]
We study some sum-product problems over matrix rings. Firstly, for $A, B, Csubseteq M_n(mathbb{F}_q)$, we have $$ |A+BC|gtrsim q^{n^2}, $$ whenever $|A||B||C|gtrsim q^{3n^2-frac{n+1}{2}}$. Secondly, if a set $A$ in $M_n(mathbb{F}_q)$ satisfies $|A|ge
In this paper, we prove some extensions of recent results given by Shkredov and Shparlinski on multiple character sums for some general families of polynomials over prime fields. The energies of polynomials in two and three variables are our main ingredients.
In recent years, sum-product estimates in Euclidean space and finite fields have been studied using a variety of combinatorial, number theoretic and analytic methods. Erdos type problems involving the distribution of distances, areas and volumes have
If the $ell$-adic cohomology of a projective smooth variety, defined over a $frak{p}$-adic field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then any model over the ring of integers of $K$ has a $k$-rational point. This sli
If the $ell$-adic cohomology of a projective smooth variety, defined over a local field $K$ with finite residue field $k$, is supported in codimension $ge 1$, then every model over the ring of integers of $K$ has a $k$-rational point. For $K$ a $p$-a