ﻻ يوجد ملخص باللغة العربية
Quantum shot noise probes the dynamics of charge transfers through a quantum conductor, reflecting whether quasiparticles flow across the conductor in a steady stream, or in syncopated bursts. We have performed high-sensitivity shot noise measurements in a quantum dot obtained in a silicon metal-oxide-semiconductor field-effect transistor. The quality of our device allows us to precisely associate the different transport regimes and their statistics with the internal state of the quantum dot. In particular, we report on large current fluctuations in the inelastic cotunneling regime, corresponding to different highly-correlated, non-Markovian charge transfer processes. We have also observed unusually large current fluctuations at low energy in the elastic cotunneling regime, the origin of which remains to be fully investigated.
The interaction between electrons and the vibrational degrees of freedom of a molecular quantum dot can lead to an exponential suppression of the conductance, an effect which is commonly termed Franck-Condon blockade. Here, we investigate this effect
The transport properties of junctions composed of a central region tunnel-coupled to external electrodes are frequently studied within the single-impurity Anderson model with Hubbard on-site interaction. In the present work, we supplement the model w
Spin qubits in silicon quantum dots offer a promising platform for a quantum computer as they have a long coherence time and scalability. The charge sensing technique plays an essential role in reading out the spin qubit as well as tuning the device
In this Report we show the role of charge defects in the context of the formation of electrostatically defined quantum dots. We introduce a barrier array structure to probe defects at multiple locations in a single device. We measure samples both bef
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many--body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental t