ترغب بنشر مسار تعليمي؟ اضغط هنا

Speaker Clustering Using Dominant Sets

64   0   0.0 ( 0 )
 نشر من قبل Feliks Hibraj
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Speaker clustering is the task of forming speaker-specific groups based on a set of utterances. In this paper, we address this task by using Dominant Sets (DS). DS is a graph-based clustering algorithm with interesting properties that fits well to our problem and has never been applied before to speaker clustering. We report on a comprehensive set of experiments on the TIMIT dataset against standard clustering techniques and specific speaker clustering methods. Moreover, we compare performances under different features by using ones learned via deep neural network directly on TIMIT and other ones extracted from a pre-trained VGGVox net. To asses the stability, we perform a sensitivity analysis on the free parameters of our method, showing that performance is stable under parameter changes. The extensive experimentation carried out confirms the validity of the proposed method, reporting state-of-the-art results under three different standard metrics. We also report reference baseline results for speaker clustering on the entire TIMIT dataset for the first time.



قيم البحث

اقرأ أيضاً

Speaker Diarization (i.e. determining who spoke and when?) for multi-speaker naturalistic interactions such as Peer-Led Team Learning (PLTL) sessions is a challenging task. In this study, we propose robust speaker clustering based on mixture of multi variate von Mises-Fisher distributions. Our diarization pipeline has two stages: (i) ground-truth segmentation; (ii) proposed speaker clustering. The ground-truth speech activity information is used for extracting i-Vectors from each speechsegment. We post-process the i-Vectors with principal component analysis for dimension reduction followed by lengthnormalization. Normalized i-Vectors are high-dimensional unit vectors possessing discriminative directional characteristics. We model the normalized i-Vectors with a mixture model consisting of multivariate von Mises-Fisher distributions. K-means clustering with cosine distance is chosen as baseline approach. The evaluation data is derived from: (i) CRSS-PLTL corpus; and (ii) three-meetings subset of AMI corpus. The CRSSPLTL data contain audio recordings of PLTL sessions which is student-led STEM education paradigm. Proposed approach is consistently better than baseline leading to upto 44.48% and 53.68% relative improvements for PLTL and AMI corpus, respectively. Index Terms: Speaker clustering, von Mises-Fisher distribution, Peer-led team learning, i-Vector, Naturalistic Audio.
Speaker counting is the task of estimating the number of people that are simultaneously speaking in an audio recording. For several audio processing tasks such as speaker diarization, separation, localization and tracking, knowing the number of speak ers at each timestep is a prerequisite, or at least it can be a strong advantage, in addition to enabling a low latency processing. For that purpose, we address the speaker counting problem with a multichannel convolutional recurrent neural network which produces an estimation at a short-term frame resolution. We trained the network to predict up to 5 concurrent speakers in a multichannel mixture, with simulated data including many different conditions in terms of source and microphone positions, reverberation, and noise. The network can predict the number of speakers with good accuracy at frame resolution.
110 - Zhuo Li , Ce Fang , Runqiu Xiao 2021
This paper describes the systems submitted by team HCCL to the Far-Field Speaker Verification Challenge. Our previous work in the AIshell Speaker Verification Challenge 2019 shows that the powerful modeling abilities of Neural Network architectures c an provide exceptional performance for this kind of task. Therefore, in this challenge, we focus on constructing deep Neural Network architectures based on TDNN, Resnet and Res2net blocks. Most of the developed systems consist of Neural Network embeddings are applied with PLDA backend. Firstly, the speed perturbation method is applied to augment data and significant performance improvements are achieved. Then, we explore the use of AMsoftmax loss function and propose to join a CE-loss branch when we train model using AMsoftmax loss. In addition, the impact of score normalization on performance is also investigated. The final system, a fusion of four systems, achieves minDCF 0.5342, EER 5.05% on task1 eval set, and achieves minDCF 0.5193, EER 5.47% on task3 eval set.
In this report, we describe the Beijing ZKJ-NPU team submission to the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). We participated in the fully supervised speaker verification track 1 and track 2. In the challenge, we explored various ki nds of advanced neural network structures with different pooling layers and objective loss functions. In addition, we introduced the ResNet-DTCF, CoAtNet and PyConv networks to advance the performance of CNN-based speaker embedding model. Moreover, we applied embedding normalization and score normalization at the evaluation stage. By fusing 11 and 14 systems, our final best performances (minDCF/EER) on the evaluation trails are 0.1205/2.8160% and 0.1175/2.8400% respectively for track 1 and 2. With our submission, we came to the second place in the challenge for both tracks.
94 - Keke Wang , Xudong Mao , Hao Wu 2021
This paper describes the ByteDance speaker diarization system for the fourth track of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). The VoxSRC-21 provides both the dev set and test set of VoxConverse for use in validation and a standal one test set for evaluation. We first collect the duration and signal-to-noise ratio (SNR) of all audio and find that the distribution of the VoxConverses test set and the VoxSRC-21s test set is more closer. Our system consists of voice active detection (VAD), speaker embedding extraction, spectral clustering followed by a re-clustering step based on agglomerative hierarchical clustering (AHC) and overlapped speech detection and handling. Finally, we integrate systems with different time scales using DOVER-Lap. Our best system achieves 5.15% of the diarization error rate (DER) on evaluation set, ranking the second at the diarization track of the challenge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا