ترغب بنشر مسار تعليمي؟ اضغط هنا

The Open Universe Initiative

97   0   0.0 ( 0 )
 نشر من قبل Paolo Giommi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The almost universal availability of electronic connectivity, web software, and portable devices is bringing about a major revolution: information of all kinds is rapidly becoming accessible to everyone, transforming social, economic and cultural life practically everywhere in the world. Internet technologies represent an unprecedented and extraordinary two-way channel of communication between producers and users of data. For this reason the web is widely recognized as an asset capable of achieving the fundamental goal of transparency of information and of data products, in line with the growing demand for transparency of all goods that are produced with public money. This paper describes Open Universe an initiative proposed to the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) with the objective of stimulating a dramatic increase in the availability and usability of space science data, extending the potential of scientific discovery to new participants in all parts of the world.

قيم البحث

اقرأ أيضاً

The almost universal availability of electronic connectivity, portable devices, and the web is bringing about a major revolution: information of all kinds is rapidly becoming accessible to everyone, transforming social, economic and cultural life pra ctically everywhere in the world. Internet technologies represent an unprecedented and extraordinary two-way channel of communication between producers and users of data. Open Universe is an initiative proposed to the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) and currently in implementation under the leadership of the United Nations Office for Outer Space Affairs (UN-OOSA). Its primary objective is to stimulate a dramatic increase in the availability and usability of space science data, extending the potential of scientific discovery to new participants in all parts of the world. This paper describes the initiative in general, some of the activities carried out to demonstrate its feasibility, and its use in the context of the BRICS Astronomy Programme.
A data life cycle (DLC) is a high-level data processing pipeline that involves data acquisition, event reconstruction, data analysis, publication, archiving, and sharing. For astroparticle physics a DLC is particularly important due to the geographic al and content diversity of the research field. A dedicated and experiment spanning analysis and data centre would ensure that multi-messenger analyses can be carried out using state-of-the-art methods. The German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI) is a joint project of the KASCADE-Grande and TAIGA collaborations, aimed at developing a concept and creating a DLC prototype that takes into account the data processing features specific for the research field. An open science system based on the KASCADE Cosmic Ray Data Centre (KCDC), which is a web-based platform to provide the astroparticle physics data for the general public, must also include effective methods for distributed data storage algorithms and techniques to allow the community to perform simulations and analyses with sophisticated machine learning methods. The aim is to achieve more efficient analyses of the data collected in different, globally dispersed observatories, as well as a modern education to Big Data Scientist in the synergy between basic research and the information society. The contribution covers the status and future plans of the initiative.
77 - T. K. Sridharan 2020
The Smithsonian Astrophysical Observatory (SAO), a member of the Center for Astrophysics | Harvard and Smithsonian, is in discussions with the Space Applications Centre (SAC) of the Indian Space Research Organization (ISRO) and its partners in the ne wly formed Indian Sub-millimetre-wave Astronomy Alliance (ISAA), to collaborate in the construction of a sub-millimeter-wave astronomy observatory in the high altitude deserts of the Himalayas, initially at the 4500 m Indian Astronomical Observatory, Hanle. Two primary science goals are targeted. One is the mapping of the distribution of neutral atomic carbon, and the carbon monoxide (CO) molecule in higher energy states, in large parts of the Milky Way, and in selected external galaxies. Such studies would advance our understanding of molecular hydrogen present in the interstellar medium, but partly missed by existing observations; and characterize Galaxy-wide molecular cloud excitation conditions, through multi-level CO observations. Stars form in interstellar clouds of molecular gas and dust, and these observations would allow research into the formation and destruction processes of such molecular clouds and the life cycle of galaxies. As the second goal, the observatory would add a new location to the global Event Horizon Telescope (EHT) network, which lacks a station in the Himalayan longitudes. This addition would enhance the quality of the images synthesized by the EHT, support observations in higher sub-millimeter wave bands, sharpening its resolving ability, improve its dynamic imaging capability and add weather resilience to observing campaigns. In the broader context, this collaboration can be a starting point for a wider, mutually beneficial scientific exchange between the Indian and US astronomy communities, including a potential future EHT space component.
We first review the related works on the observable consequence of landscape and the regulation of e-foldings during inflation. We focus on a branch of observable consequence of landscape which predicts an open universe with negative curvature if e-f oldings $N>62$. After discussing the observable regulation from the aspect by Kaloper, Kleban and Sorbo, we make an argument that in the non-flat background the observable $N$ is suppressed by a factor $k/rho_{0}$. We point out that this seems to detect the information where e-foldings $N>62$ possibly. Finally, we discuss our outcomes with the recent work by Arkani-Hamed et al.
With this paper we participate to the call for ideas issued by the European Space Agency to define the Science Program and plan for space missions from 2035 to 2050. In particular we present five science cases where major advancements can be achieved thanks to space-based spectroscopic observations at ultraviolet (UV) wavelengths. We discuss the possibility to (1) unveil the large-scale structures and cosmic web in emission at redshift <~1.7; (2) study the exchange of baryons between galaxies and their surroundings to understand the contribution of the circumgalactic gas to the evolution and angular-momentum build-up of galaxies; (3) constrain the efficiency of ram-pressure stripping in removing gas from galaxies and its role in quenching star formation; (4) characterize the progenitor population of core-collapse supernovae to reveal the explosion mechanisms of stars; (5) target accreting white dwarfs in globular clusters to determine their evolution and fate. These science themes can be addressed thanks to UV (wavelength range lambda ~ 90 - 350 nm) observations carried out with a panoramic integral field spectrograph (field of view ~ 1 x 1 arcmin^2 ), and medium spectral (R = 4000) and spatial (~ 1 - 3) resolution. Such a UV-optimized instrument will be unique in the coming years, when most of the new large facilities such as the Extremely Large Telescope and the James Webb Space Telescope are optimized for infrared wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا