ترغب بنشر مسار تعليمي؟ اضغط هنا

Nearest neighbor density functional estimation from inverse Laplace transform

165   0   0.0 ( 0 )
 نشر من قبل Jongha Jon Ryu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A new approach to $L_2$-consistent estimation of a general density functional using $k$-nearest neighbor distances is proposed, where the functional under consideration is in the form of the expectation of some function $f$ of the densities at each point. The estimator is designed to be asymptotically unbiased, using the convergence of the normalized volume of a $k$-nearest neighbor ball to a Gamma distribution in the large-sample limit, and naturally involves the inverse Laplace transform of a scaled version of the function $f.$ Some instantiations of the proposed estimator recover existing $k$-nearest neighbor based estimators of Shannon and Renyi entropies and Kullback--Leibler and Renyi divergences, and discover new consistent estimators for many other functionals such as logarithmic entropies and divergences. The $L_2$-consistency of the proposed estimator is established for a broad class of densities for general functionals, and the convergence rate in mean squared error is established as a function of the sample size for smooth, bounded densities.



قيم البحث

اقرأ أيضاً

Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for large sample size. Th ese methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induce a bias due to a poor description of the local geometry of the underlying probability measure. We introduce a new class of knn estimators that we call geometric knn estimators (g-knn), which use more complex local volume elements to better model the local geometry of the probability measures. As an example of this class of estimators, we develop a g-knn estimator of entropy and mutual information based on elliptical volume elements, capturing the local stretching and compression common to a wide range of dynamical systems attractors. A series of numerical examples in which the thickness of the underlying distribution and the sample sizes are varied suggest that local geometry is a source of problems for knn methods such as the Kraskov-St{o}gbauer-Grassberger (KSG) estimator when local geometric effects cannot be removed by global preprocessing of the data. The g-knn method performs well despite the manipulation of the local geometry. In addition, the examples suggest that the g-knn estimators can be of particular relevance to applications in which the system is large, but data size is limited.
127 - Hanyuan Hang 2019
We investigate an algorithm named histogram transform ensembles (HTE) density estimator whose effectiveness is supported by both solid theoretical analysis and significant experimental performance. On the theoretical side, by decomposing the error te rm into approximation error and estimation error, we are able to conduct the following analysis: First of all, we establish the universal consistency under $L_1(mu)$-norm. Secondly, under the assumption that the underlying density function resides in the H{o}lder space $C^{0,alpha}$, we prove almost optimal convergence rates for both single and ensemble density estimators under $L_1(mu)$-norm and $L_{infty}(mu)$-norm for different tail distributions, whereas in contrast, for its subspace $C^{1,alpha}$ consisting of smoother functions, almost optimal convergence rates can only be established for the ensembles and the lower bound of the single estimators illustrates the benefits of ensembles over single density estimators. In the experiments, we first carry out simulations to illustrate that histogram transform ensembles surpass single histogram transforms, which offers powerful evidence to support the theoretical results in the space $C^{1,alpha}$. Moreover, to further exert the experimental performances, we propose an adaptive version of HTE and study the parameters by generating several synthetic datasets with diversities in dimensions and distributions. Last but not least, real data experiments with other state-of-the-art density estimators demonstrate the accuracy of the adaptive HTE algorithm.
This paper considers estimation of a univariate density from an individual numerical sequence. It is assumed that (i) the limiting relative frequencies of the numerical sequence are governed by an unknown density, and (ii) there is a known upper boun d for the variation of the density on an increasing sequence of intervals. A simple estimation scheme is proposed, and is shown to be $L_1$ consistent when (i) and (ii) apply. In addition it is shown that there is no consistent estimation scheme for the set of individual sequences satisfying only condition (i).
The inversion of nabla Laplace transform, corresponding to a causal sequence, is considered. Two classical methods, i.e., residual calculation method and partial fraction method are developed to perform the inverse nabla Laplace transform. For the fi rst method, two alternative formulae are proposed when adopting the poles inside or outside of the contour, respectively. For the second method, a table on the transform pairs of those popular functions is carefully established. Besides illustrating the effectiveness of the developed methods with two illustrative examples, the applicability are further discussed in the fractional order case.
This paper studies the optimal rate of estimation in a finite Gaussian location mixture model in high dimensions without separation conditions. We assume that the number of components $k$ is bounded and that the centers lie in a ball of bounded radiu s, while allowing the dimension $d$ to be as large as the sample size $n$. Extending the one-dimensional result of Heinrich and Kahn cite{HK2015}, we show that the minimax rate of estimating the mixing distribution in Wasserstein distance is $Theta((d/n)^{1/4} + n^{-1/(4k-2)})$, achieved by an estimator computable in time $O(nd^2+n^{5/4})$. Furthermore, we show that the mixture density can be estimated at the optimal parametric rate $Theta(sqrt{d/n})$ in Hellinger distance and provide a computationally efficient algorithm to achieve this rate in the special case of $k=2$. Both the theoretical and methodological development rely on a careful application of the method of moments. Central to our results is the observation that the information geometry of finite Gaussian mixtures is characterized by the moment tensors of the mixing distribution, whose low-rank structure can be exploited to obtain a sharp local entropy bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا