ترغب بنشر مسار تعليمي؟ اضغط هنا

The ensemble photometric variability of over $10^5$ quasars in the Dark Energy Camera Legacy Survey and the Sloan Digital Sky Survey

55   0   0.0 ( 0 )
 نشر من قبل Zefeng Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the ensemble variability analysis results of quasars using the Dark Energy Camera Legacy Survey (DECaLS) and the Sloan Digital Sky Survey (SDSS) quasar catalogs. Our dataset includes 119,305 quasars with redshifts up to 4.89. Combining the two datasets provides a 15-year baseline and permits analysis of the long timescale variability. Adopting a power-law form for the variability structure function, $V=A(t/1yr)^{gamma}$, we use the multi-dimensional parametric fitting to explore the relationships between the quasar variability amplitude and a wide variety of quasar properties, including redshift (positive), bolometric luminosity (negative), rest-frame wavelength (negative), and black hole mass (uncertain). We also find that $gamma$ can be also expressed as a function of redshift (negative), bolometric luminosity (positive), rest-frame wavelength (positive), and black hole mass (positive). Tests of the fitting significance with the bootstrap method show that, even with such a large quasar sample, some correlations are marginally significant. The typical value of $gamma$ for the entire dataset is $gtrsim 0.25$, consistent with the results in previous studies on both the quasar ensemble variability and the structure function. A significantly negative correlation between the variability amplitude and the Eddington ratio is found, which may be explained as an effect of accretion disk instability.

قيم البحث

اقرأ أيضاً

We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~100 0 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called changing-look quasars, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.
Periodically variable quasars have been suggested as close binary supermassive black holes. We present a systematic search for periodic light curves in 625 spectroscopically confirmed quasars with a median redshift of 1.8 in a 4.6 deg$^2$ overlapping region of the Dark Energy Survey Supernova (DES-SN) fields and the Sloan Digital Sky Survey Stripe 82 (SDSS-S82). Our sample has a unique 20-year long multi-color ($griz$) light curve enabled by combining DES-SN Y6 observations with archival SDSS-S82 data. The deep imaging allows us to search for periodic light curves in less luminous quasars (down to $r{sim}$23.5 mag) powered by less massive black holes (with masses $gtrsim10^{8.5}M_{odot}$) at high redshift for the first time. We find five candidates with significant (at $>$99.74% single-frequency significance in at least two bands with a global p-value of $sim$7$times10^{-4}$--3$times10^{-3}$ accounting for the look-elsewhere effect) periodicity with observed periods of $sim$3--5 years (i.e., 1--2 years in rest frame) having $sim$4--6 cycles spanned by the observations. If all five candidates are periodically variable quasars, this translates into a detection rate of ${sim}0.8^{+0.5}_{-0.3}$% or ${sim}1.1^{+0.7}_{-0.5}$ quasar per deg$^2$. Our detection rate is 4--80 times larger than those found by previous searches using shallower surveys over larger areas. This discrepancy is likely caused by differences in the quasar populations probed and the survey data qualities. We discuss implications on the future direct detection of low-frequency gravitational waves. Continued photometric monitoring will further assess the robustness and characteristics of these candidate periodic quasars to determine their physical origins.
We present a new approach to analysing the dependence of quasar variability on rest-frame wavelengths. We exploited the spectral archive of the Sloan Digital Sky Survey (SDSS) to create a sample of more than 9000 quasars in the Stripe 82. The quasar catalogue was matched with the Light Motion Curve Catalogue for SDSS Stripe 82 and individual first-order structure functions were computed. The structure functions are used to create a variability indicator that is related to the same intrinsic timescales for all quasars (1 to 2 yr in the rest frame). We study the variability ratios for adjacent SDSS filter bands as a function of redshift. While variability is almost always stronger in the bluer passband compared to the redder, the variability ratio depends on whether strong emission lines contribute to either one band or the other. The variability ratio-redshift relations resemble the corresponding colour index-redshift relations. From the comparison with Monte Carlo simulations of variable quasar spectra we find that the observed variability ratio-redshift relations are closely fitted assuming that (a) the r.m.s. fluctuation of the quasar continuum follows a power law-dependence on the intrinsic wavelength with an exponent -2 (i.e., bluer when brighter) and (b) the variability of the emission line flux is only about 10% of that of the underlying continuum. These results, based upon the photometry of more than 8000 quasars, confirm the previous findings by Wilhite et al. (2005) from 315 quasars with repeated SDSS spectroscopy. Finally, we find that quasars with unusual spectra and weak emission lines tend to have less variability than conventional quasars. This trend is opposite to what is expected from the dilution effect of variability due to line emission and may be indicative of high Eddington ratios in these unconventinal quasars.
We use a sample of over 5000 active galactic nuclei (AGN) with extended morphologies at z<0.8 from the Sloan Digital Sky Survey (SDSS) to study the ensemble optical variability as a function of rest-frame time lag and AGN luminosity with the aim of i nvestigating these parameter relationships at lower luminosities than previously studied. We compare photometry from imaging data with spectrophotometry obtained weeks to years later in the Sloan g, r, and i bands. We employ quasar and galaxy eigenspectra fitting to separate the AGN and host galaxy components. A strong correlation between the variability amplitude and rest-frame time lag is observed, in agreement with quasar structure functions but extending to AGN several magnitudes fainter than previously studied. The structure function slopes for our fainter AGN sample are slightly shallower than those found in quasars studies. An anticorrelation with luminosity is clearly detected, with lower luminosity AGN displaying greater variability amplitudes. We demonstrate for the first time that this anticorrelation extends to AGN as faint as $M_{AGN_i}sim-18.5$, with a slight trend towards shallower slopes at luminosities fainter than $M_{AGN_i}sim-20.2$.
We present the ensemble properties of 31 comets (27 resolved and 4 unresolved) observed by the Sloan Digital Sky Survey (SDSS). This sample of comets represents about 1 comet per 10 million SDSS photometric objects. Five-band (u,g,r,i,z) photometry i s used to determine the comets colors, sizes, surface brightness profiles, and rates of dust production in terms of the Af{rho} formalism. We find that the cumulative luminosity function for the Jupiter Family Comets in our sample is well fit by a power law of the form N(< H) propto 10(0.49pm0.05)H for H < 18, with evidence of a much shallower fit N(< H) propto 10(0.19pm0.03)H for the faint (14.5 < H < 18) comets. The resolved comets show an extremely narrow distribution of colors (0.57 pm 0.05 in g - r for example), which are statistically indistinguishable from that of the Jupiter Trojans. Further, there is no evidence of correlation between color and physical, dynamical, or observational parameters for the observed comets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا