ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetic $gamma$-rays from TeV scale dark matter annihilation resummed

133   0   0.0 ( 0 )
 نشر من قبل Martin Beneke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The annihilation cross section of TeV scale dark matter particles $chi^0$ with electroweak charges into photons is affected by large quantum corrections due to Sudakov logarithms and the Sommerfeld effect. We calculate the semi-inclusive photon energy spectrum in $chi^0chi^0to gamma+X$ in the vicinity of the maximal photon energy $E_gamma = m_chi$ with NLL accuracy in an all-order summation of the electroweak perturbative expansion adopting the pure wino model. This results in the most precise theoretical prediction of the annihilation rate for $gamma$-ray telescopes with photon energy resolution of parametric order $m_W^2/m_chi$ for photons with TeV energies.

قيم البحث

اقرأ أيضاً

In this paper, we explore the possibility of a linearly polarized gamma-ray signal from dark matter annihilations in the Galactic center. Considering neutral weakly interacting massive particles, a polarized gamma-ray signal can be realized by a two- component dark matter model of Majorana fermions with an anapole moment. We discuss the spin alignment of such dark matter fermions in the Galactic center and then estimate the intensity and the polarizability of the final-state electromagnetic radiation in the dark matter annihilations. For low-mass dark matter, the photon flux at sub-GeV energies may be polarized at a level detectable in current X-ray polarimeters. Depending on the mass ratio between the final-state fermion and DM, the degree of polarization at the mass threshold can reach $70%$ or even higher, providing us with a new tool for probing the nature of dark matter in future gamma-ray polarization experiments.
It is well known that stable weak scale particles are viable dark matter candidates since the annihilation cross section is naturally about the right magnitude to leave the correct thermal residual abundance. Many dark matter searches have focused on relatively light dark matter consistent with weak couplings to the Standard Model. However, in a strongly coupled theory, or even if the coupling is just a few times bigger than the Standard Model couplings, dark matter can have TeV-scale mass with the correct thermal relic abundance. Here we consider neutral TeV-mass scalar dark matter, its necessary interactions, and potential signals. We consider signals both with and without higher-dimension operators generated by strong coupling at the TeV scale, as might happen for example in an RS scenario. We find some potential for detection in high energy photons that depends on the dark matter distribution. Detection in positrons at lower energies, such as those PAMELA probes, would be difficult though a higher energy positron signal could in principle be detectable over background. However, a light dark matter particle with higher-dimensional interactions consistent with a TeV cutoff can in principle match PAMELA data.
The $gamma$-ray and neutrino emissions from dark matter (DM) annihilation in galaxy clusters are studied. After about one year operation of Fermi-LAT, several nearby clusters are reported with stringent upper limits of GeV $gamma$-ray emission. We us e the Fermi-LAT upper limits of these clusters to constrain the DM model parameters. We find that the DM model distributed with substructures predicted in cold DM (CDM) scenario is strongly constrained by Fermi-LAT $gamma$-ray data. Especially for the leptonic annihilation scenario which may account for the $e^{pm}$ excesses discovered by PAMELA/Fermi-LAT/HESS, the constraint on the minimum mass of substructures is of the level $10^2-10^3$ M$_{odot}$, which is much larger than that expected in CDM picture, but is consistent with a warm DM scenario. We further investigate the sensitivity of neutrino detections of the clusters by IceCube. It is found that neutrino detection is much more difficult than $gamma$-rays. Only for very heavy DM ($sim 10$ TeV) together with a considerable branching ratio to line neutrinos the neutrino sensitivity is comparable with that of $gamma$-rays.
Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered smoking gun evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter spa ce of great interest in the context of dark matter which is a thermal relic. We consider theories in which the dark matters primary connection to the Standard Model is via the top quark, realizing strong gamma ray lines consistent with a thermal relic through the forbidden channel mechanism proposed in the Higgs in Space Model. We consider realistic UV-completions of the Higgs in Space and related theories, and show that a rich structure of observable gamma ray lines is consistent with a thermal relic as well as constraints from dark matter searches and the LHC. Particular attention is paid to the one loop contributions to the continuum gamma rays, which can easily swamp the line signals in some cases, and have been largely overlooked in previous literature.
112 - M. Beneke , A. Broggio , C. Hasner 2019
The annihilation cross section of weakly interacting TeV scale dark matter particles $chi^0$ into photons is affected by large quantum corrections due to electroweak Sudakov logarithms and the Sommerfeld effect. We extend our previous work on the res ummation of the semi-inclusive photon energy spectrum in $chi^0chi^0to gamma+X$ in the vicinity of the maximal photon energy $E_gamma = m_chi$ with NLL accuracy from the case of narrow photon energy resolution $E^gamma_{rm res}$ of order $m_W^2/m_chi$ to intermediate resolution of order $E^gamma_{rm res} sim m_W$. We also provide details on the previous narrow resolution calculation. The two calculations, performed in different effective field theory set-ups for the wino dark matter model, are then shown to match well, providing an accurate representation up to energy resolutions of about 300 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا