ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/X-shooter GRBs: Individual extinction curves of star-forming regions

101   0   0.0 ( 0 )
 نشر من قبل Tayyaba Zafar
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The extinction profiles in Gamma-Ray Burst (GRB) afterglow spectral energy distributions (SEDs) are usually described by the Small Magellanic Cloud (SMC)-type extinction curve. In different empirical extinction laws, the total-to-selective extinction, RV, is an important quantity because of its relation to dust grain sizes and compositions. We here analyse a sample of 17 GRBs (0.34<z<7.84) where the ultraviolet to near-infrared spectroscopic observations are available through the VLT/X-shooter instrument, giving us an opportunity to fit individual extinction curves of GRBs for the first time. Our sample is compiled on the basis that multi-band photometry is available around the X-shooter observations. The X-shooter data are combined with the Swift X-ray data and a single or broken power-law together with a parametric extinction law is used to model the individual SEDs. We find 10 cases with significant dust, where the derived extinction, AV, ranges from 0.1-1.0mag. In four of those, the inferred extinction curves are consistent with the SMC curve. The GRB individual extinction curves have a flat RV distribution with an optimal weighted combined value of RV = 2.61+/-0.08 (for seven broad coverage cases). The average GRB extinction curve is similar to, but slightly steeper than the typical SMC, and consistent with the SMC Bar extinction curve at ~95% confidence level. The resultant steeper extinction curves imply populations of small grains, where large dust grains may be destroyed due to GRB activity. Another possibility could be that young age and/or lower metallicities of GRBs environments are responsible for the steeper curves.



قيم البحث

اقرأ أيضاً

Star formation occurs on physical scales corresponding to individual star forming regions, typically of order ~100 parsecs in size, but current observational facilities cannot resolve these scales within field galaxies beyond the local universe. Howe ver, the magnification from strong gravitational lensing allows us to measure the properties of these discrete star forming regions within galaxies in the distant universe. New results from multi-wavelength spectroscopic studies of a sample of extremely bright, highly magnified lensed galaxies are revealing the complexity of star formation on sub-galaxy scales during the era of peak star formation in the universe. We find a wide range of properties in the rest-frame UV spectra of individual galaxies, as well as in spectra that originate from different star forming regions within the same galaxy. Large variations in the strengths and velocity structure of Lyman-alpha and strong P Cygni lines such as C IV, and MgII provide new insights into the astrophysical relationships between extremely massive stars, the elemental abundances and physical properties of the nebular gas those stars ionize, and the galactic-scale outflows they power.
82 - K.M. Flaherty 2007
We present an independent estimate of the interstellar extinction law for the Spitzer IRAC bands as well as a first attempt at extending the law to the 24micron MIPS band. The source data for these measurements are observations of five nearby star-fo rming regions: the Orion A cloud, NGC 2068/71, NGC 2024/23, Serpens and Ophiuchus. Color excess ratios E(H-Ks)/E(Ks-[lambda]) were measured for stars without infrared excess dust emission from circumstellar disks/envelopes. For four of these five regions, the extinction laws are similar at all wavelengths and differ systematically from a previous determination of the extinction law, which was dominated by the diffuse ISM, derived for the IRAC bands. This difference could be due to the difference in the dust properties of the dense molecular clouds observed here and those of the diffuse ISM. The extinction law at longer wavelengths toward the Ophiuchus region lies between that to the other four regions studied here and that for the ISM. In addition, we extended our extinction law determination to 24micron for Serpens and NGC 2068/71 using Spitzer MIPS data. We compare these results against several ISO extinction law determinations, although in each case there are assumptions which make absolute comparison uncertain. However, our work confirms a relatively flatter extinction curve from 4 - 8micron than the previously assumed standard, as noted by all of these recent studies. The extinction law at 24micron is consistent with previous measurements and models, although there are relatively large uncertainties.
136 - Tayyaba Zafar 2011
GRB afterglows are well suited to extinction studies due to their brightness, simple power-law spectra and the occurrence of GRBs in distant star forming galaxies. In this paper we present results from the SED analysis of a sample of 41 GRB afterglow s, from X-ray to NIR wavelengths. This is the largest sample of extinction curves outside the Local Group and, to date, the only extragalactic sample of absolute extinction curves based on spectroscopy. Visual extinction correlation with HI column density as well as total and gas-phase metal column density are examined. Approximately half the sample require a cooling break between the optical and X-ray regimes. The broken power-law SEDs show an average change in the spectral index of delta_beta=0.51 with a standard deviation of 0.02. This is consistent with the expectation from a simple synchrotron model. Of the sample, 63% are well described by the SMC-type extinction curve and have moderate or low extinction, with AV<0.65. Almost a quarter of our sample is consistent with no significant extinction (typically AV<0.1). The 2175AA extinction bump is detected unequivocally in 7% of our sample (3 GRBs), which all have A_V>1.0. We find an anti-correlation between gas-to-dust ratio and metallicity consistent with the Local Group relation. Our metals-to-dust ratios derived from the soft X-ray absorption are always larger (3-30 times) than the Local Group value, which may mean that GRB hosts may be less efficient at turning their metals into dust. However, we find that gas, dust, and metal column densities are all likely to be influenced by photo-ionization and dust destruction effects from the GRB. [abridged]
290 - Laurent Loinard 2009
Multi-epoch radio-interferometric observations of young stellar objects can be used to measure their displacement over the celestial sphere with a level of accuracy that currently cannot be attained at any other wavelength. In particular, the accurac y achieved using carefully calibrated, phase-referenced observations with Very Long Baseline Interferometers such as NRAOs Very Long Baseline Array is better than 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and the proper motion of any radio-emitting young star within several hundred parsecs of the Sun with an accuracy better than a few percent. Using that technique, the mean distances to Taurus, Ophiuchus, Perseus and Orion have already been measured to unprecedented accuracy. With improved telescopes and equipment, the distance to all star-forming regions within 1 kpc of the Sun and beyond, as well as their internal structure and dynamics could be determined. This would significantly improve our ability to compare the observational properties of young stellar objects with theoretical predictions, and would have a major impact on our understanding of low-mass star-formation.
We model the dynamical evolution of star forming regions with a wide range of initial properties. We follow the evolution of the regions substructure using the Q-parameter, we search for dynamical mass segregation using the Lambda_MSR technique, and we also quantify the evolution of local density around stars as a function of mass using the Sigma_LDR method. The amount of dynamical mass segregation measured by Lambda_MSR is generally only significant for subvirial and virialised, substructured regions - which usually evolve to form bound clusters. The Sigma_LDR method shows that massive stars attain higher local densities than the median value in all regions, even those that are supervirial and evolve to form (unbound) associations. We also introduce the Q-Sigma_LDR plot, which describes the evolution of spatial structure as a function of mass-weighted local density in a star forming region. Initially dense (>1000 stars pc^{-2}), bound regions always have Q >1, Sigma_LDR > 2 after 5Myr, whereas dense unbound regions always have Q < 1, Sigma_LDR > 2 after 5Myr. Less dense regions (<100 stars pc^{-2}) do not usually exhibit Sigma_LDR > 2 values, and if relatively high local density around massive stars arises purely from dynamics, then the Q-Sigma_LDR plot can be used to estimate the initial density of a star forming region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا