ﻻ يوجد ملخص باللغة العربية
We reformulate the problem of bounding the total rank of the homology of perfect chain complexes over the group ring $mathbb{F}_p[G]$ of an elementary abelian $p$-group $G$ in terms of commutative algebra. This extends results of Carlsson for $p=2$ to all primes. As an intermediate step, we construct an embedding of the derived category of perfect chain complexes over $mathbb{F}_p[G]$ into the derived category of $p$-DG modules over a polynomial ring.
This note contains a generalization to $p>2$ of the authors previous calculations of the coefficients of $(mathbb{Z}/2)^n$-equivariant ordinary cohomology with coefficients in the constant $mathbb{Z}/2$-Mackey functor. The algberaic results by S.Kriz
The $ER(2)$-cohomology of $Bmathbb{Z}/(2^q)$ and $mathbb{C}P^n$ are computed along with the Atiyah-Hirzebruch spectral sequence for $ER(2)^*(mathbb{C}P^infty)$. This, along with other papers in this series, gives us the $ER(2)$-cohomology of all Eile
A projectively normal Calabi-Yau threefold $X subseteq mathbb{P}^n$ has an ideal $I_X$ which is arithmetically Gorenstein, of Castelnuovo-Mumford regularity four. Such ideals have been intensively studied when $I_X$ is a complete intersection, as wel
Let $V$ be an elementary abelian $2$-group and $X$ be a finite $V$-CW-complex. In this memoir we study two cochain complexes of modules over the mod2 Steenrod algebra $mathrm{A}$, equipped with an action of $mathrm{H}^{*}V$, the mod2 cohomology of $V
We propose a new theory of (non-split) P^n-functors. These are F: A -> B for which the adjunction monad RF is a repeated extension of Id_A by powers of an autoequivalence H and three conditions are satisfied: the monad condition, the adjoints conditi