ﻻ يوجد ملخص باللغة العربية
Purpose: To verify dose delivery and quality assurance of volumetric modulated arc therapy (VMAT) for head and neck cancer. Method: The Imaging and Radiation Oncology Core Houston (IROC-H) head and neck phantom with thermo- luminescent dosimeters (TLDs) and films, were imaged with computed tomography scan and the reconstructed image was transferred to pinnacle treatment planning system (TPS). On TPS the planning target volume (PTV), secondary target volume (STV) and organ at risk (OAR) were delineated manually and a treatment plan was made. The dose constraints were determined for the concerned organs according to IROC-H prescription. The treatment plan was optimized using adoptive convolution algorithm to improve dose homogeneity and conformity. The dose calculation was performed using C.C Convolution algorithm and a Varian True Beam linear accelerator was used to deliver the treatment plan to the head and neck phantom. The delivered radiation dose to the phantom was measured through TLDs and GafChromic EBT2 films. The dosimetric performance of the VMAT delivery was studied by analysing percent dose difference, iso-dose line profile and gamma analysis of the TPS computed dose and linac delivered doses. Result: the percent dose difference of 3.8% was observed between the planned and measured doses of TLDs and a 1.5mm distance to agreement (DTA) was observed by comparing iso-dose line profiles. Passed the gamma criteria of 3%/3 mm was with good percentages. Conclusion: The dosimetric performance of VMAT delivery for a challenging head and neck radiotherapy can be verified using TLDs and films imbedded in an anthropomorphic H&N phantom.
This paper focuses on some dosimetry aspects of proton therapy and pencil beam scanning based on the experience accumulated at Paul Scherrer Institute(PSI). The basic formalism for absolute dosimetry in proton therapy is outlined and the two main tec
Purpose: To develop a model to generate volumetric dose distribution from two isodose surfaces (iso-surfaces), and to interactively tune dose distribution by iso-surface dragging. Methods: We model volumetric dose distribution as analytical extension
Therapeutic protons acting on O18-substituted thymidine increase cytotoxicity in radio-resistant human cancer cells. We consider here the physics behind the irradiation during proton beam therapy and diagnosis using O18-enriched thymine in DNA, with
Heavy-ion therapy, particularly using scanned (active) beam delivery, provides a precise and highly conformal dose distribution, with maximum dose deposition for each pencil beam at its endpoint (Bragg peak), and low entrance and exit dose. To take f
Charged Particle Therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbons. A critical issue is the monitoring of the dose released by the beam to the tumor and to the surrounding tissues. We present the desig