ﻻ يوجد ملخص باللغة العربية
The efficiency at maximum power has been investigated extensively, yet the practical control scheme to achieve it remains elusive. We fill such gap with a stepwise Carnot-like cycle, which consists the discrete isothermal process (DIP) and adiabatic process. With DIP, we validate the widely adopted assumption of mathscr{C}/t relation of the irreversible entropy generation S^{(mathrm{ir})}, and show the explicit dependence of the coefficient mathscr{C} on the fluctuation of the speed of tuning energy levels as well as the microscopic coupling constants to the heat baths. Such dependence allows to control the irreversible entropy generation by choosing specific control schemes. We further demonstrate the achievable efficiency at maximum power and the corresponding control scheme with the simple two-level system. Our current work opens new avenues for the experimental test, which was not feasible due to the lack the of the practical control scheme in the previous low-dissipation model or its equivalents.
The efficiency of small thermal machines is typically a fluctuating quantity. We here study the efficiency large deviation function of two exemplary quantum heat engines, the harmonic oscillator and the two-level Otto cycles. While the efficiency sta
We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we
Given a quantum heat engine that operates in a cycle that reaches maximal efficiency for a time-dependent Hamiltonian H(t) of the working substance, with overall controllable driving H(t) = g(t) H, we study the deviation of the efficiency from the op
Efficiency at maximum power (EMP) is a very important specification for a heat engine to evaluate the capacity of outputting adequate power with high efficiency. It has been proved theoretically that the limit EMP of thermoelectric heat engine can be