ﻻ يوجد ملخص باللغة العربية
Highly efficient and widely applicable working mechanisms that allow nanomaterials and devices to respond to external stimuli with controlled mechanical motions could make far-reaching impact to reconfigurable, adaptive, and robotic nanodevices. Here, we report an innovative mechanism that allows multifold reconfiguration of mechanical rotation of semiconductor nanoentities in electric (E) fields by visible light stimulation. When illuminated by light in the visible to infrared range, the rotation speed of semiconductor Si nanowires in electric fields can instantly increase, decrease, and even reverse the orientation depending on the intensity of the applied light and the AC E-field frequency. This multifold rotation configuration is highly efficient, instant, and facile. Switching between different modes can be simply controlled by the light intensity at an AC frequency. An array of experimentations, theoretical analysis, and simulations are carried out to understand the underlying principle, which can be attributed to the optically tunable polarization of Si nanowires in aqueous suspension and an external electric field. Finally, leveraging this newly discovered effect, we successfully differentiate semiconductor and metallic nanoentities in a non-contact and non-destructive manner. This research could inspire a new class of reconfigurable nanoelectromechanical and nanorobotic devices for optical sensing, communication, molecule release, detection, nanoparticle separation, and microfluidic automation.
To develop active nanomaterials that can instantly respond to external stimuli with designed mechanical motions is an important step towards the realization of nanomachines and nanorobots. Herein, we present our finding of a versatile working mechani
GaN nanowires grown by molecular beam epitaxy generally suffer from dominant nonradiative recombination, which is believed to originate from point defects. To suppress the formation of these defects, we explore the synthesis of GaN nanowires at tempe
We present an electrically switchable graphene terahertz (THz) modulator with a tunable-by-design optical bandwidth and we exploit it to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal-gr
We induce surface carrier densities up to $sim7cdot 10^{14}$cm$^{-2}$ in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4- and 5-layer graphene below 20-30K we observe a logarithmic upturn of resistanc
Integrated photodetectors are essential components of scalable photonics platforms for quantum and classical applications. However, most efforts in the development of such devices to date have been focused on infrared telecommunications wavelengths.