ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly and Semi Supervised Human Body Part Parsing via Pose-Guided Knowledge Transfer

83   0   0.0 ( 0 )
 نشر من قبل Cewu Lu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human body part parsing, or human semantic part segmentation, is fundamental to many computer vision tasks. In conventional semantic segmentation methods, the ground truth segmentations are provided, and fully convolutional networks (FCN) are trained in an end-to-end scheme. Although these methods have demonstrated impressive results, their performance highly depends on the quantity and quality of training data. In this paper, we present a novel method to generate synthetic human part segmentation data using easily-obtained human keypoint annotations. Our key idea is to exploit the anatomical similarity among human to transfer the parsing results of a person to another person with similar pose. Using these estimated results as additional training data, our semi-supervised model outperforms its strong-supervised counterpart by 6 mIOU on the PASCAL-Person-Part dataset, and we achieve state-of-the-art human parsing results. Our approach is general and can be readily extended to other object/animal parsing task assuming that their anatomical similarity can be annotated by keypoints. The proposed model and accompanying source code are available at https://github.com/MVIG-SJTU/WSHP



قيم البحث

اقرأ أيضاً

Human body part segmentation refers to the task of predicting the semantic segmentation mask for each body part. Fully supervised body part segmentation methods achieve good performances but require an enormous amount of effort to annotate part masks for training. In contrast to high annotation costs needed for a limited number of part mask annotations, a large number of weak labels such as poses and full body masks already exist and contain relevant information. Motivated by the possibility of using existing weak labels, we propose the first weakly supervised body part segmentation framework. The core idea is first converting the sparse weak labels such as keypoints to the initial estimate of body part masks, and then iteratively refine the part mask predictions. We name the initial part masks estimated from poses the part priors. With sufficient extra weak labels, our weakly supervised framework achieves a comparable performance (62.0% mIoU) to the fully supervised method (63.6% mIoU) on the Pascal-Person-Part dataset. Furthermore, in the extended semi-supervised setting, the proposed framework outperforms the state-of-art methods. Moreover, we extend our proposed framework to other keypoint-supervised part segmentation tasks such as face parsing.
Fully convolutional networks (FCN) have achieved great success in human parsing in recent years. In conventional human parsing tasks, pixel-level labeling is required for guiding the training, which usually involves enormous human labeling efforts. T o ease the labeling efforts, we propose a novel weakly supervised human parsing method which only requires simple object keypoint annotations for learning. We develop an iterative learning method to generate pseudo part segmentation masks from keypoint labels. With these pseudo masks, we train an FCN network to output pixel-level human parsing predictions. Furthermore, we develop a correlation network to perform joint prediction of part and object segmentation masks and improve the segmentation performance. The experiment results show that our weakly supervised method is able to achieve very competitive human parsing results. Despite our method only uses simple keypoint annotations for learning, we are able to achieve comparable performance with fully supervised methods which use the expensive pixel-level annotations.
259 - Kun Li , Jinsong Zhang , Yebin Liu 2020
Human pose transfer, which aims at transferring the appearance of a given person to a target pose, is very challenging and important in many applications. Previous work ignores the guidance of pose features or only uses local attention mechanism, lea ding to implausible and blurry results. We propose a new human pose transfer method using a generative adversarial network (GAN) with simplified cascaded blocks. In each block, we propose a pose-guided non-local attention (PoNA) mechanism with a long-range dependency scheme to select more important regions of image features to transfer. We also design pre-posed image-guided pose feature update and post-posed pose-guided image feature update to better utilize the pose and image features. Our network is simple, stable, and easy to train. Quantitative and qualitative results on Market-1501 and DeepFashion datasets show the efficacy and efficiency of our model. Compared with state-of-the-art methods, our model generates sharper and more realistic images with rich details, while having fewer parameters and faster speed. Furthermore, our generated images can help to alleviate data insufficiency for person re-identification.
Estimating 3D human poses from video is a challenging problem. The lack of 3D human pose annotations is a major obstacle for supervised training and for generalization to unseen datasets. In this work, we address this problem by proposing a weakly-su pervised training scheme that does not require 3D annotations or calibrated cameras. The proposed method relies on temporal information and triangulation. Using 2D poses from multiple views as the input, we first estimate the relative camera orientations and then generate 3D poses via triangulation. The triangulation is only applied to the views with high 2D human joint confidence. The generated 3D poses are then used to train a recurrent lifting network (RLN) that estimates 3D poses from 2D poses. We further apply a multi-view re-projection loss to the estimated 3D poses and enforce the 3D poses estimated from multi-views to be consistent. Therefore, our method relaxes the constraints in practice, only multi-view videos are required for training, and is thus convenient for in-the-wild settings. At inference, RLN merely requires single-view videos. The proposed method outperforms previous works on two challenging datasets, Human3.6M and MPI-INF-3DHP. Codes and pretrained models will be publicly available.
Although monocular 3D human pose estimation methods have made significant progress, its far from being solved due to the inherent depth ambiguity. Instead, exploiting multi-view information is a practical way to achieve absolute 3D human pose estimat ion. In this paper, we propose a simple yet effective pipeline for weakly-supervised cross-view 3D human pose estimation. By only using two camera views, our method can achieve state-of-the-art performance in a weakly-supervised manner, requiring no 3D ground truth but only 2D annotations. Specifically, our method contains two steps: triangulation and refinement. First, given the 2D keypoints that can be obtained through any classic 2D detection methods, triangulation is performed across two views to lift the 2D keypoints into coarse 3D poses.Then, a novel cross-view U-shaped graph convolutional network (CV-UGCN), which can explore the spatial configurations and cross-view correlations, is designed to refine the coarse 3D poses. In particular, the refinement progress is achieved through weakly-supervised learning, in which geometric and structure-aware consistency checks are performed. We evaluate our method on the standard benchmark dataset, Human3.6M. The Mean Per Joint Position Error on the benchmark dataset is 27.4 mm, which outperforms the state-of-the-arts remarkably (27.4 mm vs 30.2 mm).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا