ترغب بنشر مسار تعليمي؟ اضغط هنا

Projecting onto any two-photon polarization state using linear optics

175   0   0.0 ( 0 )
 نشر من قبل Guillaume Thekkadath
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Projectors are a simple but powerful tool for manipulating and probing quantum systems. For instance, projecting two-qubit systems onto maximally entangled states can enable quantum teleportation. While such projectors have been extensively studied, partially-entangling measurements have been largely overlooked, especially experimentally, despite their important role in quantum foundations and quantum information. Here, we propose a way to project two polarized photons onto any state with a single experimental setup. Our scheme does not require optical non-linearities or additional photons. Instead, the entangling operation is provided by Hong-Ou-Mandel interference and post-selection. The efficiency of the scheme is between 50% and 100%, depending on the projector. We perform an experimental demonstration and reconstruct the operator describing our measurement using detector tomography. Finally, we flip the usual role of measurement and state in Hardys test by performing a partially-entangling projector on separable states. The results verify the entangling nature of our measurement with six standard deviations of confidence.

قيم البحث

اقرأ أيضاً

366 - Youn Seok Lee 2020
We designed and implemented a novel combination of a Sagnac-interferometer with a Mach-Zehnder interferometer for a source of polarization-entangled photons. The new versatile configuration does not require multi-wavelength polarization optics, yet i t performs with a good polarization quality and phase-stability over a wide wavelength range. We demonstrate the interferometer using only standard commercial optics to experimentally realize the pulsed generation of polarization-entangled photon-pairs at wavelengths of 764nm and 1221nm via type-I spontaneous four-wave mixing in a polarization-maintaining fiber. Polarization entanglement was verified by a polarization-correlation measurement with a visibility of 95.5% from raw coincidence counts and the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality with $S=2.70pm0.04$. The long-term phase-stability was characterized by an Allan deviation of 8$^circ$ over an integration time of about 1 hour with no active phase-stabilization.
We discuss codes for protecting logical qubits carried by optical fields from the effects of amplitude damping, i.e. linear photon loss. We demonstrate that the correctability condition for one-photon loss imposes limitations on the range of manipula tions than can be implemented with passive linear-optics networks.
We show theoretically that two atomic dipoles in a resonator constitute a non-linear medium, whose properties can be controlled through the relative position of the atoms inside the cavity and the detuning and intensity of the driving laser. We ident ify the parameter regime where the system operates as a parametric amplifier, based on the cascade emission of the collective dipole of the atoms, and determine the corresponding spectrum of squeezing of the field at the cavity output. This dynamics could be observed as a result of self-organization of laser-cooled atoms in resonators.
149 - Lan Zhou , Yu-Bo Sheng 2015
We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two $N$-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state.
Using only linear optical elements, the creation of dual-rail photonic entangled states is inherently probabilistic. Known entanglement generation schemes have low success probabilities, requiring large-scale multiplexing to achieve near-deterministi c operation of quantum information processing protocols. In this paper, we introduce multiple techniques and methods to generate photonic entangled states with high probability, which have the potential to reduce the footprint of Linear Optical Quantum Computing (LOQC) architectures drastically. Most notably, we are showing how to improve Bell state preparation from four single photons to up to p=2/3, boost Type-I fusion to 75% with a dual-rail Bell state ancilla and improve Type-II fusion beyond the limits of Bell state discrimination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا