ﻻ يوجد ملخص باللغة العربية
Projectors are a simple but powerful tool for manipulating and probing quantum systems. For instance, projecting two-qubit systems onto maximally entangled states can enable quantum teleportation. While such projectors have been extensively studied, partially-entangling measurements have been largely overlooked, especially experimentally, despite their important role in quantum foundations and quantum information. Here, we propose a way to project two polarized photons onto any state with a single experimental setup. Our scheme does not require optical non-linearities or additional photons. Instead, the entangling operation is provided by Hong-Ou-Mandel interference and post-selection. The efficiency of the scheme is between 50% and 100%, depending on the projector. We perform an experimental demonstration and reconstruct the operator describing our measurement using detector tomography. Finally, we flip the usual role of measurement and state in Hardys test by performing a partially-entangling projector on separable states. The results verify the entangling nature of our measurement with six standard deviations of confidence.
We designed and implemented a novel combination of a Sagnac-interferometer with a Mach-Zehnder interferometer for a source of polarization-entangled photons. The new versatile configuration does not require multi-wavelength polarization optics, yet i
We discuss codes for protecting logical qubits carried by optical fields from the effects of amplitude damping, i.e. linear photon loss. We demonstrate that the correctability condition for one-photon loss imposes limitations on the range of manipula
We show theoretically that two atomic dipoles in a resonator constitute a non-linear medium, whose properties can be controlled through the relative position of the atoms inside the cavity and the detuning and intensity of the driving laser. We ident
We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are
Using only linear optical elements, the creation of dual-rail photonic entangled states is inherently probabilistic. Known entanglement generation schemes have low success probabilities, requiring large-scale multiplexing to achieve near-deterministi