ﻻ يوجد ملخص باللغة العربية
Inspired by applications of gravitys rainbow in UV completion of general relativity, we investigate charged topological black holes in gravitys rainbow and show that depending on the values of different parameters, these solutions may encounter with black hole solutions with two horizons, extreme black hole (one horizon) or naked singularity (without horizon). First, we obtain black hole solutions, calculate thermodynamical quantities of the system and check the first law of thermodynamics. Then, we study the thermodynamical behavior of the system including thermal stability and phase transitions. In addition, we employ geometrical thermodynamics to probe phase transition points and limits on having physical solutions. Finally, we obtain heat engines corresponding to these black holes. The goal is to see how black holes parameters such as topological factor and rainbow functions would affect efficiency of the heat engines.
We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild-AdS
We study the thermodynamics of $AdS_4$ black hole solutions of Einstein-Maxwell theory that are accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black hole horizon is a spindle and can be uplifted o
We present a class of charged black hole solutions in an ($n+2)$-dimensional massive gravity with a negative cosmological constant, and study thermodynamics and phase structure of the black hole solutions both in grand canonical ensemble and canonica
It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead t
In this paper, we investigate thermodynamical structure of dyonic black holes in the presence of gravitys rainbow. We confirm that for super magnetized and highly pressurized scenarios, the number of black holes phases is reduced to a single phase. I