ﻻ يوجد ملخص باللغة العربية
We report an in-depth Angle Resolved Photoemission Spectroscopy (ARPES) study on $2H$-TaS$_2$, a canonical incommensurate Charge Density Wave (CDW) system. This study demonstrates that just as in related incommensurate CDW systems, $2H$-TaSe$_2$ and $2H$-NbSe$_2$, the energy gap ($Delta_{text{cdw}},$) of $2H$-TaS$_2$ is localized along the K-centered Fermi surface barrels and is particle-hole asymmetric. The persistence of $Delta_{text{cdw}},$ even at temperatures higher than the CDW transition temperature $it{T}_{text{cdw}},$ in $2H$-TaS$_2$, reflects the similar pseudogap (PG) behavior observed previously in $2H$-TaSe$_2$ and $2H$-NbSe$_2$. However, in sharp contrast to $2H$-NbSe$_2$, where $Delta_{text{cdw}},$ is non-zero only in the vicinity of a few hot spots on the inner K-centered Fermi surface barrels, $Delta_{text{cdw}},$ in $2H$-TaS$_2$ is non-zero along the entirety of both K-centered Fermi surface barrels. Based on a tight-binding model, we attribute this dichotomy in the momentum dependence and the Fermi surface specificity of $Delta_{text{cdw}},$ between otherwise similar CDW compounds to the different orbital orientations of their electronic states that are involved in CDW pairing. Our results suggest that the orbital selectivity plays a critical role in the description of incommensurate CDW materials.
The pressure evolution of the Raman active electronic excitations of the transition metal dichalcogenides 2H-TaS$_2$ is followed through the pressure phase diagram embedding incommensurate charge-density-wave and superconducting states. At high press
A charge-density wave (CDW) state has a broken symmetry described by a complex order parameter with an amplitude and a phase. The conventional view, based on clean, weak-coupling systems, is that a finite amplitude and long-range phase coherence set
We present a state-of-the-art density functional theory (DFT) study which models crucial features of the partially disordered orbital order stacking in the prototypical layered transition metal dichalcogenide 1T-TaS2 . Our results not only show that
As superconductors are thinned down to the 2D limit, their critical temperature $T_c$ typically decreases. Here we report the opposite behavior, a substantial enhancement of $T_c$ with decreasing thickness, in 2D crystalline superconductor 2H-TaS$_2$
We report the magnetoresistance of a charge-density wave (CDW) in $o$-TaS$_3$ whiskers at 4.2 K under a magnetic field up to 5.2 T. An anisotropic negative magnetoresistance is found in the nonlinear regime of current-voltage characteristics. The ang