ﻻ يوجد ملخص باللغة العربية
Freestanding graphene displays an outstanding resilience to electron irradiation at low electron energies. Point defects in graphene are, however, subject to beam driven dynamics. This means that high resolution micrographs of point defects, which usually require a high electron irradiation dose might not represent the intrinsic defect population. Here, we capture the inital defects formed by ejecting carbon atoms under electron irradiation, by imaging with very low doses and subsequent reconstruction of the frequently occuring defects via a maximum likelihood algorithm.
Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10^-7 mbar
We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that em
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution an
We perform scanning-gate microscopy on a quantum-point contact. It is defined in a high-mobility two-dimensional electron gas of an AlGaAs/GaAs heterostructure, giving rise to a weak disorder potential. The lever arm of the scanning tip is significan
Point Projection Microscopy (PPM) is used to image suspended graphene using low-energy electrons (100-200eV). Because of the low energies used, the graphene is neither damaged or contaminated by the electron beam. The transparency of graphene is meas