ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravity model for dyadic Olympic competitions

101   0   0.0 ( 0 )
 نشر من قبل Jae-Suk Yang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Olympic Games, professional athletes representing their nations compete regardless of economic, political and cultural differences. In this study, we apply gravity model to observe characteristics, represented by distances among nations that directly compete against one another in the Summer Olympics. We use dyadic data consisting of medal winning nations in the Olympic Games from 1952 to 2016. To compare how the dynamics changed during and after the Cold War period, we partitioned our data into two time periods (1952-1988 and 1992-2016). Our research is distinguishable from previous studies in that we newly introduce application of gravity model in observing the dynamics of the Olympic Games. Our results show that for the entire study period, countries that engaged each other in competition in the finals of an Olympic event tend to be similar in economic size. After the Cold War, country pairs that compete more frequently tend to be similar in genetic origin.

قيم البحث

اقرأ أيضاً

The gravity model (GM) analogous to Newtons law of universal gravitation has successfully described the flow between different spatial regions, such as human migration, traffic flows, international economic trades, etc. This simple but powerful appro ach relies only on the mass factor represented by the scale of the regions and the geometrical factor represented by the geographical distance. However, when the population has a subpopulation structure distinguished by different attributes, the estimation of the flow solely from the coarse-grained geographical factors in the GM causes the loss of differential geographical information for each attribute. To exploit the full information contained in the geographical information of subpopulation structure, we generalize the GM for population flow by explicitly harnessing the subpopulation properties characterized by both attributes and geography. As a concrete example, we examine the marriage patterns between the bride and the groom clans of Korea in the past. By exploiting more refined geographical and clan information, our generalized GM properly describes the real data, a part of which could not be explained by the conventional GM. Therefore, we would like to emphasize the necessity of using our generalized version of the GM, when the information on such nongeographical subpopulation structures is available.
84 - Jialin Bi , Ji Jin , Cunquan Qu 2020
Identifying important nodes is one of the central tasks in network science, which is crucial for analyzing the structure of a network and understanding the dynamical processes on a network. Most real-world systems are time-varying and can be well rep resented as temporal networks. Motivated by the classic gravity model in physics, we propose a temporal gravity model to identify influential nodes in temporal networks. Two critical elements in the gravity model are the masses of the objects and the distance between two objects. In the temporal gravity model, we treat nodes as the objects, basic node properties, such as static and temporal properties, as the nodes masses. We define temporal distances, i.e., fastest arrival distance and temporal shortest distance, as the distance between two nodes in our model. We utilize our model as well as the baseline centrality methods on important nodes identification. Experimental results on ten real-world datasets show that the temporal gravity model outperforms the baseline methods in quantifying node structural influence. Moreover, when we use the temporal shortest distance as the distance between two nodes, our model is robust and performs the best in quantifying node spreading influence compared to the baseline methods.
We investigate the traffic flows of the Korean highway system, which contains both public and private transportation information. We find that the traffic flow T(ij) between city i and j forms a gravity model, the metaphor of physical gravity as desc ribed in Newtons law of gravity, P(i)P(j)/r(ij)^2, where P(i) represents the population of city i and r(ij) the distance between cities i and j. It is also shown that the highway network has a heavy tail even though the road network is a rather uniform and homogeneous one. Compared to the highway network, air and public ground transportation establish inhomogeneous systems and have power-law behaviors.
Understanding the mechanisms behind human mobility patterns is crucial to improve our ability to optimize and predict traffic flows. Two representative mobility models, i.e., radiation and gravity models, have been extensively compared to each other against various empirical data sets, while their fundamental relation is far from being fully understood. In order to study such a relation, we first model the heterogeneous population landscape by generating a fractal geometry of sites and then by assigning to each site a population independently drawn from a power-law distribution. Then the radiation model on this population landscape, which we call the radiation-on-landscape (RoL) model, is compared to the gravity model to derive the distance exponent in the gravity model in terms of the properties of the population landscape, which is confirmed by the numerical simulations. Consequently, we provide a possible explanation for the origin of the distance exponent in terms of the properties of the heterogeneous population landscape, enabling us to better understand mobility patterns constrained by the travel distance.
Socially relevant situations that involve strategic interactions are widespread among animals and humans alike. To study these situations, theoretical and experimental works have adopted a game-theoretical perspective, which has allowed to obtain val uable insights about human behavior. However, most of the results reported so far have been obtained from a population perspective and considered one specific conflicting situation at a time. This makes it difficult to extract conclusions about the consistency of individuals behavior when facing different situations, and more importantly, to define a comprehensive classification of the strategies underlying the observed behaviors. Here, we present the results of a lab-in-the-field experiment in which subjects face four different dyadic games, with the aim of establishing general behavioral rules dictating individuals actions. By analyzing our data with an unsupervised clustering algorithm, we find that all the subjects conform, with a large degree of consistency, to a limited number of behavioral phenotypes (Envious, Optimist, Pessimist, and Trustful), with only a small fraction of undefined subjects. We also discuss the possible connections to existing interpretations based on a priori theoretical approaches. Our findings provide a relevant contribution to the experimental and theoretical efforts towards the identification of basic behavioral phenotypes in a wider set of contexts without aprioristic assumptions regarding the rules or strategies behind actions. From this perspective, our work contributes to a fact-based approach to the study of human behavior in strategic situations, that could be applied to simulating societies, policy-making scenario building and even for a variety of business applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا