ﻻ يوجد ملخص باللغة العربية
Ultracompact binaries with orbital periods less than a few hours will dominate the gravitational wave signal in the mHz regime. Until recently, 10 systems were expected have a predicted gravitational wave signal strong enough to be detectable by the Laser Interferometer Space Antenna (LISA), the so-called `verification binaries. System parameters, including distances, are needed to provide an accurate prediction of the expected gravitational wave strength to be measured by LISA. Using parallaxes from {sl Gaia} Data Release 2 we calculate signal-to-noise ratios (SNR) for $approx$50 verification binary candidates. We find that 11 binaries reach a SNR$geq$20, two further binaries reaching a SNR$geq$5 and three more systems are expected to have a SNR$approx$5 after four years integration with LISA. For these 16 systems we present predictions of the gravitational wave amplitude ($mathcal{A}$) and parameter uncertainties from Fisher information matrix on the amplitude ($mathcal{A}$) and inclination ($iota$).
For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetr
Gaias Early Third Data Release (EDR3) does not contain new radial velocities because these will be published in Gaias full third data release (DR3), expected in the first half of 2022. To maximise the usefulness of EDR3, Gaias second data release (DR
We consider the parallaxes of sixteen cataclysmic variables and related objects that are included in the TGAS catalogue, which is part of the Gaia first data release, and compare these with previous parallax measurements. The parallax of the dwarf no
The second Gaia data release (Gaia-DR2) contains, beyond the astrometry, three-band photometry for 1.38 billion sources. We have used these three broad bands to infer stellar effective temperatures, Teff, for all sources brighter than G=17 mag with T
We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for complete