ترغب بنشر مسار تعليمي؟ اضغط هنا

Laboratory Rotational Spectra of Silyl Isocyanide

69   0   0.0 ( 0 )
 نشر من قبل Kin Long Kelvin Lee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rotational spectrum of silyl isocyanide (SiH$_3$NC), an isomer of the well studied silyl cyanide (SiH$_3$CN), has been detected in the laboratory in a supersonic molecular beam, and the identification was confirmed by observations of the corresponding rotational transitions in the rare isotopic species SiH$_3$$^{15}$NC and SiH$_3$N$^{13}$C. Spectroscopic constants derived from 19 transitions between $11 - 35$~GHz in the three lowest harmonically related rotational transitions in the $K = 0 ~{rm{and}}~1$ ladders of the normal isotopic species including the nitrogen nuclear quadrupole hyperfine constant, allow the principal astronomical transitions of SiH$_3$NC to be calculated to an uncertainty of about 4~km~s$^{-1}$ in equivalent radial velocity, or within the FWHM of narrow spectral features in the inner region of IRC+10216 near 200~GHz. The concentration of SiH$_3$NC in our molecular beam is three times less than SiH$_3$CN, or about the same as the corresponding ratio of the isomeric pair SiNC and SiCN produced under similar conditions. Silyl isocyanide is an excellent candidate for astronomical detection, because the spectroscopic and chemical properties are very similar to SiH$_3$CN which was recently identified in the circumstellar envelope of IRC+10216 by citet{cernicharo_discovery_2017} and of SiNC and SiCN in the same source.

قيم البحث

اقرأ أيضاً

We report on the detection of hydromagnesium isocyanide, HMgNC, in the laboratory and in the carbon rich evolved star IRC+10216. The J=1-0 and J=2-1 lines were observed in our microwave laboratory equipment in Valladolid with a spectral accuracy of 3 ,KHz. The hyperfine structure produced by the Nitrogen atom was resolved for both transitions. The derived rotational constants from the laboratory data are $B_0$=5481.4333(6),MHz, $D_0$=2.90(8),KHz, and $eQq(N)$=-2.200(2),MHz. The predicted frequencies for the rotational transitions of HMgNC in the millimeter domain have an accuracy of 0.2-0.7,MHz. Four rotational lines of this species, J=8-7, J=10-9, J=12-11 and J=13-12, have been detected towards IRC+10216. The differences between observed and calculated frequencies are $<$0.5,MHz. The rotational constants derived from space frequencies are $B_0$=5481.49(3),MHz and $D_0$=3.2(1),KHz, i.e., identical to the laboratory ones. A merged fit to the laboratory and space frequencies provides $B_0$=5481.4336(4),MHz and $D_0$=2.94(5),KHz. We have derived a column density for HMgNC of (6$pm$2)$times10^{11}$,cm$^{-2}$. From the observed line profiles the molecule have to be produced produced in the layer where other metal-isocyanides have been already found in this source. The abundance ratio between MgNC and its hydrogenated variety, HMgNC, is $simeq$20.
We studied the abundance of HCN, H13CN, and HN13C in a sample of prestellar cores, in order to search for species associated with high density gas. We used the IRAM 30m radiotelescope to observe along the major and the minor axes of L1498, L1521E, an d TMC 2, three cores chosen on the basis of their CO depletion properties. We mapped the J=1-0 transition of HCN, H13CN, and HN13C towards the source sample plus the J=1-0 transition of N2H+ and the J=2-1 transition of C18O in TMC 2. We used two different radiative transfer codes, making use of recent collisional rate calculations, in order to determine more accurately the excitation temperature, leading to a more exact evaluation of the column densities and abundances. We find that the optical depths of both H13CN(1-0) and HN13C(1-0) are non-negligible, allowing us to estimate excitation temperatures for these transitions in many positions in the three sources. The observed excitation temperatures are consistent with recent computations of the collisional rates for these species and they correlate with hydrogen column density inferred from dust emission. We conclude that HCN and HNC are relatively abundant in the high density zone, n(H2) about 10^5 cm-3, where CO is depleted. The relative abundance [HNC]/[HCN] differs from unity by at most 30 per cent consistent with chemical expectations. The three hyperfine satellites of HCN(1-0) are optically thick in the regions mapped, but the profiles become increasingly skewed to the blue (L1498 and TMC 2) or red (L1521E) with increasing optical depth suggesting absorption by foreground layers.
We report the first detection of pure rotational transitions of TiO and TiO_2 at (sub-)millimeter wavelengths towards the red supergiant VY CMa. A rotational temperature, T_rot, of about 250 K was derived for TiO_2. Although T_rot was not well constr ained for TiO, it is likely somewhat higher than that of TiO_2. The detection of the Ti oxides confirms that they are formed in the circumstellar envelopes of cool oxygen-rich stars and may be the seeds of inorganic-dust formation, but alternative explanations for our observation of TiO and TiO_2 in the cooler regions of the envelope cannot be ruled out at this time. The observations suggest that a significant fraction of the oxides is not converted to dust, but instead remains in the gas phase throughout the outflow.
We report the detection in TMC-1 of the protonated form of C3S. The discovery of the cation HC3S+ was carried through the observation of four harmonically related lines in the Q band using the Yebes 40m radiotelescope, and is supported by accurate ab initio calculations and laboratory measurements of its rotational spectrum. We derive a column density N(HC3S+) = (2.0 +/- 0.5)e11 cm-2, which translates to an abundance ratio C3S/HC3S+ of 65 +/- 20. This ratio is comparable to the CS/HCS+ ratio (35 +/- 8) and is a factor of about ten larger than the C3O/HC3O+ ratio previously found in the same source. However, the abundance ratio HC3O+/HC3S+ is 1.0 +/- 0.5, while C3O/C3S is just 0.11. We also searched for protonated C2S in TMC-1, based on ab initio calculations of its spectroscopic parameters, and derive a 3sigma upper limit of N(HC2S+) < 9e11 cm-2 and a C2S/HC2S+ > 60. The observational results are compared with a state-of-the-art gas-phase chemical model and conclude that HC3S+ is mostly formed through several pathways: proton transfer to C3S, reaction of S+ with c-C3H2, and reaction between neutral atomic sulfur and the ion C3H3+.
Methyl mercaptan (CH3SH) is a known interstellar molecule with abundances high enough that the detection of some of its minor isotopologues is promising. The present study aims at providing accurate spectroscopic parameters for the (13)CH3SH isotopol ogue to facilitate its identification in the interstellar medium at millimetre and submillimetre wavelengths. Through careful analysis of recent CH3SH spectra from 49-510 GHz and 1.1-1.5 THz recorded at natural isotopic composition, extensive assignments were possible not only for the ground torsional state of (13)CH3SH, but also in the first and second excited states. The torsion-rotation spectrum displays complex structure due to the large-amplitude internal rotation of the (13)CH3 group, similar to the main and other minor isotopic species of methyl mercaptan. The assigned transition frequencies have been fitted to within experimental error with a 52-parameter model employing the RAM36 programme. With predictions based on this fit, (13)CH3SH was searched for in spectra from the Atacama Large Millimetre/submillimetre Array (ALMA) towards the Galactic centre source Sgr B2(N2). Several transitions were expected to be observable, but all of them turned out to be severely blended with emission from other species, which prevents us from identifying (13)CH3SH in this source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا