ﻻ يوجد ملخص باللغة العربية
The VLBI USNO 2016A (U16A) solution is part of a work-in-progress effort by USNO towards the preparation of the ICRF3. Most of the astrometric improvement with respect to the ICRF2 is due to the re-observation of the VCS sources. Our objective in this paper is to assess U16As astrometry. A comparison with ICRF2 shows statistically significant offsets of size 0.1 mas between the two solutions. While Gaia DR1 positions are not precise enough to resolve these offsets, they are found to be significantly closer to U16A than ICRF2. In particular, the trend for typically larger errors for Southern sources in VLBI solutions are decreased in U16A. Overall, the VLBI-Gaia offsets are reduced by 21%. The U16A list includes 718 sources not previously included in ICRF2. Twenty of those new sources have statistically significant radio-optical offsets. In two-thirds of the cases, these offsets can be explained from PanSTARRS images.
We describe development and application of a Global Astrometric Solution (GAS) to the problem of Pan-STARRS1 (PS1) astrometry. Current PS1 astrometry is based on differential astrometric measurements using 2MASS reference stars, thus PS1 astrometry i
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the i
We want to study whether the astrometric and photometric accuracies obtained for the Carte du Ciel plates digitized with a commercial digital camera are high enough for scientific exploitation of the plates. We use a digital camera Canon EOS~5Ds, w
Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. We de