ﻻ يوجد ملخص باللغة العربية
We present an S-band tunable loop gap resonator (LGR) providing strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area $gtrsim!50$ mm$^2$ or cylindrical volume $gtrsim!250$ mm$^3$. The wide 80 MHz device bandwidth allows driving all eight NV Zeeman resonances for bias magnetic fields below 20 G. For pulsed applications the device realizes percent-scale microwave drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity $sigma_text{rms}!=! 1.6%$ and a peak-to-peak variation $sigma_text{pp}!=! 3%$ over a circular area of 11 mm$^2$, and $sigma_text{rms} !=! 3.2%$ and $sigma_text{pp}! =! 10.5%$ over a larger 32 mm$^2$ circular area. We demonstrate incident MW power coupling to the LGR using multiple methodologies: a PCB-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately $2pi$ steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.
The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy (NV) centers in diamond is demonstrated. The electric field penetration into diamond and the loss of the guided mode are measured. The results indicate that the GaP-diamond s
It is proposed that the ground-state manifold of the neutral nitrogen-vacancy center in diamond could be used as a quantum two-level system in a solid-state-based implementation of a broadband, noise-free quantum optical memory. The proposal is based
We show that nitrogen-vacancy (NV) centers in diamond can produce a novel quantum hyperbolic metamaterial. We demonstrate that a hyperbolic dispersion relation in diamond with NV centers can be engineered and dynamically tuned by applying a magnetic
We report the design and fabrication of diamond spin-mechanical resonators embedded in a two-dimensional (2D) phononic crystal square lattice. The rectangular resonator features GHz in-plane compression modes protected by the phononic band gap of the
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processin