ﻻ يوجد ملخص باللغة العربية
Time-delay strong lensing provides a unique way to directly measure the Hubble constant ($H_{0}$). The precision of the $H_{0}$ measurement depends on the uncertainties in the time-delay measurements, the mass distribution of the main deflector(s), and the mass distribution along the line of sight. Tie and Kochanek (2018) have proposed a new microlensing effect on time delays based on differential magnification of the coherent accretion disc variability of the lensed quasar. If real, this effect could significantly broaden the uncertainty on the time delay measurements by up to $30%$ for lens systems such as PG1115+080, which have relatively short time delays and monitoring over several different epochs. In this paper we develop a new technique that uses the time-delay ratios and simulated microlensing maps within a Bayesian framework in order to limit the allowed combinations of microlensing delays and thus to lessen the uncertainties due to the proposed effect. We show that, under the assumption of Tie and Kochanek (2018), the uncertainty on the time-delay distance ($D_{Delta t}$, which is proportional to 1/$H_{0}$) of short time-delay ($sim18$ days) lens, PG1115+080, increases from $sim7%$ to $sim10%$ by simultaneously fitting the three time-delay measurements from the three different datasets across twenty years, while in the case of long time-delay ($sim90$ days) lens, the microlensing effect on time delays is negligible as the uncertainty on $D_{Delta t}$ of RXJ1131-1231 only increases from $sim2.5%$ to $sim2.6%$.
Microlensing not only brings extra magnification lightcurves on top of the intrinsic ones but also shifts them in time domain, making the actual time-delays between images of strongly lensed active galactic nucleus change on the $sim$ day(s) light-cr
We present the measurement of the Hubble Constant, $H_0$, with three strong gravitational lens systems. We describe a blind analysis of both PG1115+080 and HE0435-1223 as well as an extension of our previous analysis of RXJ1131-1231. For each lens, w
Due to the finite size of the disk and the temperature fluctuations producing the variability, microlensing changes the actual time delays between images of strongly lensed AGN on the $sim$day(s) light-crossing time scale of the emission region. This
Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and hence measuring the Hubble constant, $H_{0}$, independent of traditional distance ladder methodology. A current potential
We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) Refsdal, a gravitationally lensed SN at z=1.488$pm$0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN R