ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia Data Release 2: Catalogue validation

140   0   0.0 ( 0 )
 نشر من قبل Fr\\'ed\\'eric Arenou
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The second Gaia data release (DR2), contains very precise astrometric and photometric properties for more than one billion sources, astrophysical parameters for dozens of millions, radial velocities for millions, variability information for half a million of stellar sources and orbits for thousands of solar system objects. Before the Catalogue publication, these data have undergone dedicated validation processes. The goal of this paper is to describe the validation results in terms of completeness, accuracy and precision of the various Gaia DR2 data. The validation processes include a systematic analysis of the Catalogue content to detect anomalies, either individual errors or statistical properties, using statistical analysis, and comparisons to external data or to models. Although the astrometric, photometric and spectroscopic data are of unprecedented quality and quantity, it is shown that the data cannot be used without a dedicated attention to the limitations described here, in the Catalogue documentation and in accompanying papers. A particular emphasis is put on the caveats for the statistical use of the data in scientific exploitation.

قيم البحث

اقرأ أيضاً

124 - F. Arenou , X. Luri , C. Babusiaux 2017
Before the publication of the Gaia Catalogue, the contents of the first data release have undergone multiple dedicated validation tests. These tests aim at analysing in-depth the Catalogue content to detect anomalies, individual problems in specific objects or in overall statistical properties, either to filter them before the public release, or to describe the different caveats of the release for an optimal exploitation of the data. Dedicated methods using either Gaia internal data, external catalogues or models have been developed for the validation processes. They are testing normal stars as well as various populations like open or globular clusters, double stars, variable stars, quasars. Properties of coverage, accuracy and precision of the data are provided by the numerous tests presented here and jointly analysed to assess the data release content. This independent validation confirms the quality of the published data, Gaia DR1 being the most precise all-sky astrometric and photometric catalogue to-date. However, several limitations in terms of completeness, astrometric and photometric quality are identified and described. Figures describing the relevant properties of the release are shown and the testing activities carried out validating the user interfaces are also described. A particular emphasis is made on the statistical use of the data in scientific exploitation.
The third Gaia data release is published in two stages. The early part, Gaia EDR3, gives very precise astrometric and photometric properties for nearly two billion sources together with seven million radial velocities from Gaia DR2. The full release, Gaia DR3, will add radial velocities, spectra, light curves, and astrophysical parameters for a large subset of the sources, as well as orbits for solar system objects. Before the publication of the catalogue, many different data items have undergone dedicated validation processes. The goal of this paper is to describe the validation results in terms of completeness, accuracy, and precision for the Gaia EDR3 data and to provide recommendations for the use of the catalogue data. The validation processes include a systematic analysis of the catalogue contents to detect anomalies, either individual errors or statistical properties, using statistical analysis and comparisons to the previous release as well as to external data and to models. Gaia EDR3 represents a major step forward, compared to Gaia DR2, in terms of precision, accuracy, and completeness for both astrometry and photometry. We provide recommendations for dealing with issues related to the parallax zero point, negative parallaxes, photometry for faint sources, and the quality indicators.
Gaia DR2 provides a unique all-sky catalogue of 550737 variable stars, of which 151761 are long-period variable (LPV) candidates with G variability amplitudes larger than 0.2 mag (5-95% quantile range). About one-fifth of the LPV candidates are Mira candidates, the majority of the rest are semi-regular variable candidates. For each source, G, BP , and RP photometric time-series are published, together with some LPV-specific attributes for the subset of 89617 candidates with periods in G longer than 60 days. We describe this first Gaia catalogue of LPV candidates, and present various validation checks. Various samples of LPVs were used to validate the catalogue: a sample of well-studied very bright LPVs with light curves from the AAVSO that are partly contemporaneous with Gaia light curves, a sample of Gaia LPV candidates with good parallaxes, the ASAS_SN catalogue of LPVs, and the OGLE catalogues of LPVs towards the Magellanic Clouds and the Galactic bulge. The analyses of these samples show a good agreement between Gaia DR2 and literature periods. The same is globally true for bolometric corrections of M-type stars. The main contaminant of our DR2 catalogue comes from young stellar objects (YSOs) in the solar vicinity (within ~1 kpc), although their number in the whole catalogue is only at the percent level. A cautionary note is provided about parallax-dependent LPV attributes published in the catalogue. This first Gaia catalogue of LPVs approximately doubles the number of known LPVs with amplitudes larger than 0.2 mag, despite the conservative candidate selection criteria that prioritise low contamination over high completeness, and despite the limited DR2 time coverage compared to the long periods characteristic of LPVs. It also contains a small set of YSO candidates, which offers the serendipitous opportunity to study these objects at an early stage of the Gaia data releases.
The Gaia Data Release 2 contains the 1st release of radial velocities complementing the kinematic data of a sample of about 7 million relatively bright, late-type stars. Aims: This paper provides a detailed description of the Gaia spectroscopic data processing pipeline, and of the approach adopted to derive the radial velocities presented in DR2. Methods: The pipeline must perform four main tasks: (i) clean and reduce the spectra observed with the Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument, including wavelength, straylight, line-spread function, bias non-uniformity, and photometric zeropoint; (iii) extract the radial velocities; and (iv) verify the accuracy and precision of the results. The radial velocity of a star is obtained through a fit of the RVS spectrum relative to an appropriate synthetic template spectrum. An additional task of the spectroscopic pipeline was to provide 1st-order estimates of the stellar atmospheric parameters required to select such template spectra. We describe the pipeline features and present the detailed calibration algorithms and software solutions we used to produce the radial velocities published in DR2. Results: The spectroscopic processing pipeline produced median radial velocities for Gaia stars with narrow-band near-IR magnitude Grvs < 12 (i.e. brighter than V~13). Stars identified as double-lined spectroscopic binaries were removed from the pipeline, while variable stars, single-lined, and non-detected double-lined spectroscopic binaries were treated as single stars. The scatter in radial velocity among different observations of a same star, also published in DR2, provides information about radial velocity variability. For the hottest (Teff > 7000 K) and coolest (Teff < 3500 K) stars, the accuracy and precision of the stellar parameter estimates are not sufficient to allow selection of appropriate templates. [Abridged]
The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain referred to as the Gaia-CRF2. The Gaia-CRF2 is th e first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. It consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G from 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = 20 mag. Large-scale systematics are estimated to be in the range 20 to 30 muas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا