ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent low-energy phonon broadening near the charge order $q$-vector in bilayer cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$

91   0   0.0 ( 0 )
 نشر من قبل Yu He
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a persistent low-energy phonon broadening around $q_{B} sim 0.28$ r.l.u. along the Cu-O bond direction in the high-$T_c$ cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212). We show that such broadening exists both inside and outside the conventional charge density wave (CDW) phase, via temperature dependent measurements in both underdoped and heavily overdoped samples. Combining inelastic hard x-ray scattering, diffuse scattering, angle-resolved photoemission spectroscopy, and resonant soft x-ray scattering at the Cu $L_3$-edge, we exclude the presence of a CDW in the heavily overdoped Bi-2212 similar to that observed in the underdoped systems. Finally, we discuss the origin of such anisotropic low-energy phonon broadening, and its potential precursory role to the CDW phase in the underdoped region.



قيم البحث

اقرأ أيضاً

Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup erconducting temperatures. Yet, while solid evidences exist in several unconventional superconductors of ubiquitous critical fluctuations associated to a quantum critical point, in the cuprates they remain undetected until now. Here using symmetry-resolved electronic Raman scattering in the cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, we report the observation of enhanced electronic nematic fluctuations near the endpoint of the pseudogap phase. While our data hint at the possible presence of an incipient nematic quantum critical point, the doping dependence of the nematic fluctuations deviates significantly from a canonical quantum critical scenario. The observed nematic instability rather appears to be tied to the presence of a van Hove singularity in the band structure.
101 - Yu He , Su-Di Chen , Zi-Xiang Li 2020
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma gnetic evidence for persistent superconducting fluctuations in heavily hole-doped cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ ($T_c$ = 66~K) despite the high carrier density. With a sign-problem free quantum Monte Carlo calculation, we show how a partially flat band at ($pi$,0) can help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors.
103 - S. P. Zhao , X. B. Zhu , Y. F. Wei 2007
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temper ature-dependent measurement. A d-wave Eliashberg analysis shows that the spectrum at 4.2 K can be well fitted by considering electron couplings to a bosonic magnetic resonance mode and a broad high-energy continuum. Above $T_c$, the spectra show a clear pseudogap that persists up to 230 K, and a crossover can be seen indicating two different pseudogap phases existing above $T_c$. The intrinsic electron tunneling nature is discussed in the analysis.
We report time and angle resolved spectroscopic measurements in optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. The spectral function is monitored as a function of temperature, photoexcitation density and delay time from the pump pulse. According to our data, the superconducting gap becomes slightly stiffer when moving off the nodal direction. The nodal quasiparticles develop a faster dynamics when pumping the superconductor with a fluence that is large enough to induce the total collapse of the gap. We discuss the observed relaxation in terms of a dynamical reformation of Cooper pairs.
In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, $T_mathrm{c}$, using the assumption that $T_mathrm{c}$ dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to $T_mathrm{c}=91$ K. We show that $p$ can be determined from the underlying Fermi surfaces and that $in-situ$ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of $2Delta_0=(4pm1)k_mathrm{B}T_mathrm{c}$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا