ﻻ يوجد ملخص باللغة العربية
Maintaining maximal independent set in dynamic graph is a fundamental open problem in graph theory and the first sublinear time deterministic algorithm was came up by Assadi, Onak, Schieber and Solomon(STOC18), which achieves $O(m^{3/4})$ amortized update time. We have two main contributions in this paper. We present a new simple deterministic algorithm with $O(m^{2/3}sqrt{log m})$ amortized update time, which improves the previous best result. And we also present the first randomized algorithm with expected $O(sqrt{m}log^{1.5}m)$ amortized time against an oblivious adversary.
We present the first algorithm for maintaining a maximal independent set (MIS) of a fully dynamic graph---which undergoes both edge insertions and deletions---in polylogarithmic time. Our algorithm is randomized and, per update, takes $O(log^2 Delta
Maximal independent set (MIS), maximal matching (MM), and $(Delta+1)$-coloring in graphs of maximum degree $Delta$ are among the most prominent algorithmic graph theory problems. They are all solvable by a simple linear-time greedy algorithm and up u
We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned $d$-dimensional hypercubes. It
We present a practically efficient algorithm for maintaining a global minimum cut in large dynamic graphs under both edge insertions and deletions. While there has been theoretical work on this problem, our algorithm is the first implementation of a
The maximum independent set problem is one of the most important problems in graph algorithms and has been extensively studied in the line of research on the worst-case analysis of exact algorithms for NP-hard problems. In the weighted version, each