ترغب بنشر مسار تعليمي؟ اضغط هنا

Intertwined effects of pairing and deformation on neutron halos in magnesium isotopes

55   0   0.0 ( 0 )
 نشر من قبل Hitoshi Nakada
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Matter radii of the $^{34-40}$Mg nuclei are investigated by self-consistent Hartree-Fock-Bogolyubov calculations assuming the axial symmetry. With the semi-realistic M3Y-P6 interaction, the $N$-dependence of the matter radii observed in the experiments is reproduced excellently. Both the pairing and the deformation play significant roles in an intertwined manner. The $^{35}$Mg nucleus has a smaller radius than the neighboring even-$N$ nuclei, which is attributed to its smaller deformation. In contrast, a neutron halo is obtained in $^{37}$Mg. We point out that, in contrast to the pairing anti-halo effect that may operate on the even-$N$ nuclei, the pair correlation enhances halos in odd-$N$ nuclei, owing to the new mechanism which we call textit{unpaired-particle haloing}. The halo in $^{37}$Mg is predicted to have peanut shape in its intrinsic state, reflecting $p$-wave contribution, as in $^{40}$Mg. The $N$-dependence of the deformation is significant again, by which the single-particle level dominated by the $p$-wave component comes down.

قيم البحث

اقرأ أيضاً

The ground-state bands (GSBs) in the even-even hafnium isotopes $^{170-184}$Hf are investigated by using the cranked shell model (CSM) with pairing correlations treated by the particle-number conserving (PNC) method. The experimental kinematic moment s of inertia are reproduced very well by theoretical calculations. The second upbending of the GSB at high frequency $hbaromegaapprox0.5$ MeV observed (predicted) in $^{172}$Hf ($^{170,174-178}$Hf) attributes to the sudden alignments of the proton high-$j$ orbitals $pi1i_{13/2}$ $(1/2^{+}[660])$, $pi1h_{9/2}$ $(1/2^{-}[541])$ and orbital $pi1h_{11/2}$ $(7/2^{-}[523])$. The first upbendings of GSBs at low frequency $hbaromega=0.2-0.3$ MeV in $^{170-178}$Hf, which locate below the deformed neutron shell $N=108$, attribute to the alignment of the neutron orbital $ u1i_{13/2}$. For the heavier even-even isotopes $^{180-184}$Hf, compared to the lighter isotopes, the first band-crossing is delayed to the high frequency due to the existence of the deformed shells $N=108,116$. The upbendings of GSBs in $^{180-184}$Hf are predicted to occur at $hbaromegaapprox0.5$MeV, which come from the sharp raise of the simultaneous alignments of both proton $pi1i_{13/2}$, $pi1h_{9/2}$ and neutron $ u2g_{9/2}$ orbitals. The pairing correlation plays a very important role in the rotational properties of GSBs in even-even isotopes $^{180-184}$Hf. Its effects on upbendings and band-crossing frequencies are investigated.
144 - J. M. Yao , B. Sun , P. J. Woods 2008
The ground-state properties of the recent reported proton emitter 145Tm have been studied within the axially or triaxially deformed relativistic mean field (RMF) approaches, in which the pairing correlation is taken into account by the BCS-method wit h a constant pairing gap. It is found that triaxiality and pairing correlations play important roles in reproducing the experimental one proton separation energy. The single-particle level, the proton emission orbit, the deformation parameters beta = 0.22 and gamma = 28.98 and the corresponding spectroscopic factor for 145Tm in the triaxial RMF calculation are given as well.
Isotope-dependence of measured reaction cross sections in scattering of $^{28-32}$Ne isotopes from $^{12}$C target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne $g$-matrix. The density of projectile is calculated by th e mean-field model with the deformed Wood-Saxon potential. The deformation is evaluated by the antisymmetrized molecular dynamics. The deformation of projectile enhances calculated reaction cross sections to the measured values.
We compute the charge radii of even-mass neon and magnesium isotopes from neutron number N = 8 to the dripline. Our calculations are based on nucleon-nucleon and three-nucleon potentials from chiral effective field theory that include delta isobars. These potentials yield an accurate saturation point and symmetry energy of nuclear matter. We use the coupled-cluster method and start from an axially symmetric reference state. Binding energies and two-neutron separation energies largely agree with data and the dripline in neon is accurate. The computed charge radii have an estimated uncertainty of about 2-3% and are accurate for many isotopes where data exist. Finer details such as isotope shifts, however, are not accurately reproduced. Chiral potentials correctly yield the subshell closure at N = 14 and also a decrease in charge radii at N = 8 (observed in neon and predicted for magnesium). They yield a continued increase of charge radii as neutrons are added beyond N = 14 yet underestimate the large increase at N = 20 in magnesium.
We describe the importance of charge-exchange reactions, and in particular Gamow-Teller transitions, in astrophysical processes and double beta decay, and in understanding of nuclear structure. We first provide an overview of the central role played by the isovector pairing and the quadrupole-quadrupole channels in the description of energy spectra and in the manifestation of collective modes, some associated with deformation of the nuclear shape. We then turned our focus to Gamow-Teller (GT) transitions in relatively light nuclei, especially in the 2p1f shell, where isoscalar pairing may be playing a role in competition with the isovector pairing that dominates in heavier regions. Following a summary of the progress made in recent years on this subject, we report a systematic shell model study aimed at providing further clarification as to how these pairing modes compete. In this study, we use a schematic Hamiltonian that contains a quadrupole-quadrupole interaction as well as both isoscalar and isovector pairing interactions. We first find an optimal set of Hamiltonian parameters for the model, to provide a starting point from which to vary the relevant pairing strengths and thus assess how this impacts the behavior of GT transitions and the corresponding energy spectra and rotational properties of the various nuclei involved in the decays. The analysis includes as an important theme a comparison with experimental data. The need to suppress the isoscalar pairing mode when treating nuclei with a neutron excess to avoid producing spurious results for the ground state spin and parity with the simplified Hamiltonian is highlighted. Varying the strength parameters for the two pairing modes is found to exhibit different but systematic effects on GT transition properties and on the corresponding energy spectra, which are detailed. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا