ﻻ يوجد ملخص باللغة العربية
We report an optical inelastic-wave-mixing-enhanced atomic magnetometry technique that results in nT-level magnetic field detection at temperatures compatible with the human body without magnetic shielding, zero-field compensation, or high-frequency modulated phase-locking spectroscopy. Using Gaussian magnetic pulses that mimic the transient magnetic field produced by an action potential on a frogs nerve, we demonstrate more than 300,000-fold (550-fold) enhancement of magneto-optical rotation signal power spectral-density (power amplitude) over the conventional single-beam $Lambda-$scheme atomic magnetometry method. This new technique may bring possibilities for extremely sensitive magnetic field imaging of biological systems accessible via an optical fiber in clinical environments.
Atomic magnetometers are highly sensitive detectors of magnetic fields that monitor the evolution of the macroscopic magnetic moment of atomic vapors, and opening new applications in biological, physical, and chemical science. However, the performanc
Continuously monitored atomic spin-ensembles allow, in principle, for real-time sensing of external magnetic fields beyond classical limits. Within the linear-Gaussian regime, thanks to the phenomenon of measurement-induced spin-squeezing, they attai
Squeezed states of light have received renewed attention due to their applicability to quantum-enhanced sensing. To take full advantage of their reduced noise properties to enhance atomic-based sensors, it is necessary to generate narrowband near or
Silicon Carbide is a promising host material for spin defect based quantum sensors owing to its commercial availability and established techniques for electrical and optical microfabricated device integration. The negatively charged silicon vacancy i
State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, measured as a quantum phase accumulated in a given time interval. Optical-lattice clocks (OLCs) now operate at or near the standard