ﻻ يوجد ملخص باللغة العربية
As a long-term energy source, tidal heating in subsurface oceans of icy satellites can influence their thermal, rotational, and orbital evolution, and the sustainability of oceans. We present a new theoretical treatment for tidal heating in thin subsurface oceans with overlying incompressible elastic shells of arbitrary thickness. The stabilizing effect of an overlying shell damps ocean tides, reducing tidal heating. This effect is more pronounced on Enceladus than on Europa because the effective rigidity on a small body like Enceladus is larger. For the range of likely shell and ocean thicknesses of Enceladus and Europa, the thin shell approximation of Beuthe (2016) is generally accurate to less than about 4%.The time-averaged surface distribution of ocean tidal heating is distinct from that due to dissipation in the solid shell, with higher dissipation near the equator and poles for eccentricity and obliquity forcing respectively. This can lead to unique horizontal shell thickness variations if the shell is conductive. The surface displacement driven by eccentricity and obliquity forcing can have a phase lag relative to the forcing tidal potential due to the delayed ocean response. For Europa and Enceladus, eccentricity forcing generally produces greater tidal amplitudes due to the large eccentricity values relative to the obliquity values. Despite the small obliquity values, obliquity forcing generally produces larger phase lags due to the generation of Rossby-Haurwitz waves. If Europas shell and ocean are respectively 10 and 100 km thick, the tide amplitude and phase lag are 26.5 m and $<1$ degree for eccentricity forcing, and $<2.5$ m and $<18$ degrees for obliquity forcing. Measurement of the obliquity phase lag (e.g. by Europa Clipper) would provide a probe of ocean thickness
Oceanic tides are a major source of tidal dissipation. They are a key actor for the orbital and rotational evolution of planetary systems, and contribute to the heating of icy satellites hosting a subsurface ocean. Oceanic tides are characterized by
Of profound astrobiological interest is that not only does Enceladus have a water ocean, but it also appears to be salty, important for its likely habitability. Here, we investigate how salinity affects ocean dynamics and equilibrium ice shell geomet
The structure of the icy shells of ocean worlds is important for understanding the stability of their underlying oceans as it controls the rate at which heat can be transported outward and radiated to space. Future spacecraft exploration of the ocean
Beneath the icy shell encasing Enceladus, a small icy moon of Saturn, a global ocean of liquid water ejects geyser-like plumes into space through fissures in the ice, making it an attractive place to investigate habitability and to search for extrate
The spectral position of the 3.6 micron continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturns icy satellites. This feature is characterizing the cry