ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of magnons on interfacial phonon drag in YIG/metal systems

74   0   0.0 ( 0 )
 نشر من قبل Arati Prakash
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine substrate-to-film interfacial phonon drag on typical spin Seebeck heterostructures, in particular studying the effect of ferromagnetic magnons on the phonon-electron drag dynamics at the interface. We investigate with high precision the effect of magnons in the Pt|YIG heterostructure by designing a magnon drag thermocouple; a hybrid sample with both a Pt|YIG film and Pt|GGG interface accessible isothermally via a 6 nm Pt film patterned in a rectangular U shape with one arm on the 250 nm YIG film and the other on GGG. We measure the voltage between the isothermal ends of the U, while applying a temperature gradient parallel to the arms and perpendicular to the bottom connection. With a uniform applied temperature gradient, the Pt acts as a differential thermocouple. We conduct temperature-dependent longitudinal thermopower measurements on this sample. Results show that the YIG interface actually decreases the thermopower of the film, implying that magnons impede phonon drag. We repeat the experiment using metals with low spin Hall angles, Ag and Al, in place of Pt. We find that the phonon drag peak in thermopower is killed in samples where the metallic interface is with YIG. We also investigate magneto-thermopower and YIG film thickness dependence. These measurements confirm our findings that magnons impede the phonon-electron drag interaction at the metallic interface in these heterostructures.



قيم البحث

اقرأ أيضاً

We study the temperature dependence of thermoelectric transport properties of four FeSb2 nanocomposite samples with different grain sizes. The comparison of the single crystals and nanocomposites of varying grain size indicates the presence of substa ntial phonon drag effects in this system contributing to a large Seebeck coefficient at low temperature. As the grain size decreases, the increased phonon scattering at the grain boundaries leads to a suppression of the phonon-drag effect, resulting in a much smaller peak value of the Seebeck coefficient in the nanostructured bulk materials. As a consequence, the ZT values are not improved significantly even though the thermal conductivity is drastically reduced.
Lee, Rice and Anderson, in their monumental paper, have proved the existence of a collective mode describing the coupled motion of electron density and phonons in one-dimensional incommensurate charge density wave (CDW) in the Peierls state. This mod e, which represents the coherent sliding motion of electrons and lattice distortions and affects low energy transport properties, is described by the phase of the complex order parameter of the Peierls condensate, leading to Frohlich superconductivity in pure systems. Once spatial disorder is present, however, phason is pinned and system is transformed into an insulating ground state: a dramatic change. Since phason can be considered as an ultimate of phonon drag effect, it is of interest to see its effects on thermoelectricity, which has been studied in the present paper based linear response theory of Kubo and Luttinger. The result indicates that a large absolute value of Seebeck coefficient proportional to the square root of resistivity is expected at low temperatures k_B T/Delta <<1 (Delta: Peierls gap) with opposite sign to the electronic contributions in the absence of Peierls gap.
Voltage modulation of yttrium iron garnet (YIG) with compactness, high speed response, energy efficiency and both practical/theoretical siginificances can be widely applied to various YIG based spintronics such as spin Hall, spin pumping, spin Seebac k effects. Here we initial an ionic modulation of interfacial magnetism process on YIG/Pt bilayer heterostructures, where the Pt capping would influence the ferromagnetic (FMR) field position significantly, and realize a significant magnetism enhancement in bilayer system. A large voltage induced FMR field shifts of 690 Oe has been achieved in YIG (13 nm)/Pt (3 nm) multilayer heterostructures under a small voltage bias of 4.5 V. The remarkable ME tunability comes from voltage induced extra FM ordering in Pt metal layer near the Pt/YIG interface. The first-principle theoretical simulation reveal that the electrostatic doping induced Pt5+ ions have strong magnetic ordering due to uncompensated d orbit electrons. The large voltage control of FMR change pave a foundation towards novel voltage tunable YIG based spintronics.
We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet$|$platinum (YIG$|$Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall like signature in Pt, sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing interface conductance $G_{mathrm{i}}$ plays a crucial role in YIG$|$Pt bilayers. In particular, our data suggest a sign change in $G_{mathrm{i}}$ between $10,mathrm{K}$ and $300,mathrm{K}$. Additionally, we report a higher order Hall effect, which appears in thin Pt films on YIG at low temperatures.
We experimentally investigate spin-orbit torque and spin pumping in Y$_3$Fe$_5$O$_{12}$(YIG)/Pt bilayers with ultrathin insertion layers at the interface. An insertion layer of Cu suppresses both spin-orbit torque and spin pumping, whereas an inserti on layer of Ni$_{80}$Fe$_{20}$ (permalloy, Py) enhances them, in a quantitatively consistent manner with the reciprocity of the two spin transmission processes. However, we observe a large enhancement of Gilbert damping with the insertion of Py that cannot be accounted for solely by spin pumping, suggesting significant spin-memory loss due to the interfacial magnetic layer. Our findings indicate that the magnetization at the YIG-metal interface strongly influences the transmission and depolarization of pure spin current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا