ﻻ يوجد ملخص باللغة العربية
We implement exact triangle counting in graphs on the GPU using three different methodologies: subgraph matching to a triangle pattern; programmable graph analytics, with a set-intersection approach; and a matrix formulation based on sparse matrix-matrix multiplies. All three deliver best-of-class performance over CPU implementations and over comparable GPU implementations, with the graph-analytic approach achieving the best performance due to its ability to exploit efficient filtering steps to remove unnecessary work and its high-performance set-intersection core.
In this paper, we propose a novel method to compute triangle counting on GPUs. Unlike previous formulations of graph matching, our approach is BFS-based by traversing the graph in an all-source-BFS manner and thus can be mapped onto GPUs in a massive
Graphics Processing Unit (GPU) computing is becoming an alternate computing platform for numerical simulations. However, it is not clear which numerical scheme will provide the highest computational efficiency for different types of problems. To this
We study the problem of finding large cuts in $d$-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size $(1/2 + 0.177/sqrt{d})m$, where $m$ is the number of edges. We give a simpler
Triangle counting is a building block for a wide range of graph applications. Traditional wisdom suggests that i) hashing is not suitable for triangle counting, ii) edge-centric triangle counting beats vertex-centric design, and iii) communication-fr
In this paper we describe the research and development activities in the Center for Efficient Exascale Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element algorithms for high-order application