ﻻ يوجد ملخص باللغة العربية
We find the statistical weight of excitations at long times following a quench in the Kondo problem. The weights computed are directly related to the overlap between initial and final states that are, respectively, states close to the Kondo ground state and states close to the normal metal ground state. The overlap is computed making use of the Slavnov approach, whereby a functional representation method is adopted, in order to obtain definite expressions.
We predict the emergence of turbulent scaling in the quench dynamics of the two-dimensional Heisenberg model for a wide range of initial conditions and model parameters. In the isotropic Heisenberg model, we find that the spin-spin correlation functi
We give integral equations for the generating function of the cummulants of the work done in a quench for the Kondo model in the thermodynamic limit. Our approach is based on an extension of the thermodynamic Bethe ansatz to non-equilibrium situation
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length
We study the time evolution of the logarithmic negativity after a global quantum quench. In a 1+1 dimensional conformal invariant field theory, we consider the negativity between two intervals which can be either adjacent or disjoint. We show that th