ترغب بنشر مسار تعليمي؟ اضغط هنا

The GALAH survey: Co-orbiting stars and chemical tagging

76   0   0.0 ( 0 )
 نشر من قبل Jeffrey Simpson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study using the second data release of the GALAH survey of stellar parameters and elemental abundances of 15 pairs of stars identified by Oh et al 2017. They identified these pairs as potentially co-moving pairs using proper motions and parallaxes from Gaia DR1. We find that 11 very wide (>1.7 pc) pairs of stars do in fact have similar Galactic orbits, while a further four claimed co-moving pairs are not truly co-orbiting. Eight of the 11 co-orbiting pairs have reliable stellar parameters and abundances, and we find that three of those are quite similar in their abundance patterns, while five have significant [Fe/H] differences. For the latter, this indicates that they could be co-orbiting because of the general dynamical coldness of the thin disc, or perhaps resonances induced by the Galaxy, rather than a shared formation site. Stars such as these, wide binaries, debris of past star formation episodes, and coincidental co-orbiters, are crucial for exploring the limits of chemical tagging in the Milky Way.

قيم البحث

اقرأ أيضاً

Since the advent of $Gaia$ astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, $Gaia$-Sausage-Enceladus (GSE), appears to be an early building block given its v irial mass $> 10^{10},mathrm{M_odot}$ at infall ($zsim1-3$). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-$alpha$ abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] vs. [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including $30 < sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} < 55$, we can characterise an unprecedented 24 abundances of this structure with GALAH+ DR3. Our chemical selection allows us to prevent circular reasoning and characterise the dynamical properties of the GSE, for example mean $sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} = 26_{-14}^{+9}$. We find only $(29pm1)%$ of the GSE stars within the clean dynamical selection region. We thus discuss chemodynamic selections (such as eccentricity and upper limits on [Na/Fe]).
Previous studies have found that the elemental abundances of a star correlate directly with its age and metallicity. Using this knowledge, we derive ages for a sample of 250,000 stars taken from GALAH DR3 using only their overall metallicity and chem ical abundances. Stellar ages are estimated via the machine learning algorithm $XGBoost$, using main sequence turnoff stars with precise ages as our input training set. We find that the stellar ages for the bulk of the GALAH DR3 sample are accurate to 1-2 Gyr using this method. With these ages, we replicate many recent results on the age-kinematic trends of the nearby disk, including the age-velocity dispersion relationship of the solar neighborhood and the larger global velocity dispersion relations of the disk found using $Gaia$ and GALAH. The fact that chemical abundances alone can be used to determine a reliable age for a star have profound implications for the future study of the Galaxy as well as upcoming spectroscopic surveys. These results show that the chemical abundance variation at a given birth radius is quite small, and imply that strong chemical tagging of stars directly to birth clusters may prove difficult with our current elemental abundance precision. Our results highlight the need of spectroscopic surveys to deliver precision abundances for as many nucleosynthetic production sites as possible in order to estimate reliable ages for stars directly from their chemical abundances. Applying the methods outlined in this paper opens a new door into studies of the kinematic structure and evolution of the disk, as ages may potentially be estimated for a large fraction of stars in existing spectroscopic surveys. This would yield a sample of millions of stars with reliable age determinations, and allow precise constraints to be put on various kinematic processes in the disk, such as the efficiency and timescales of radial migration.
We present new identifications of five red giant stars in the Galactic halo with chemical abundance patterns that indicate they originally formed in globular clusters. Using data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE ) Survey available through Sloan Digital Sky Survey Data Release 12 (DR12), we first identify likely halo giants, and then search those for the well-known chemical tags associated with globular clusters, specifically enrichment in nitrogen and aluminum. We find that 2% of the halo giants in our sample have this chemical signature, in agreement with previous results. Following the interpretation in our previous work on this topic, this would imply that at least 13% of halo stars originally formed in globular clusters. Recent developments in the theoretical understanding of globular cluster formation raise questions about that interpretation, and we concede the possibility that these migrants represent a small fraction of the halo field. There are roughly as many stars with the chemical tags of globular clusters in the halo field as there are in globular clusters, whether or not they are accompanied by a much larger chemically untaggable population of former globular cluster stars.
The technique of chemical tagging uses the elemental abundances of stellar atmospheres to `reconstruct chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey --which aims to observe one million stars using the Anglo-Australian Telescope -- allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here we explore t-distributed stochastic neighbour embedding (t-SNE) -- which identifies an optimal mapping of a high-dimensional space into fewer dimensions -- whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a dataset of 13 abundances measured in the spectra of 187,000 stars by the GALAH survey. We recover 7 of the 9 observed clusters (6 globular and 3 open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6$^circ$ -- one tidal radius away from the cluster centre.
We measure chemical abundances for over 20 elements of 15 N-rich field stars with high resolution ($R sim 30000$) optical spectra. We find that Na, Mg, Al, Si, and Ca abundances of our N-rich field stars are mostly consistent with those of stars from globular clusters (GCs). Seven stars are estimated to have [Al/Fe$]>0.5$, which is not found in most GC first generation stars. On the other hand, $alpha$ element abundances (especially Ti) could show distinguishable differences between in situ stars and accreted stars. We discover that one interesting star, with consistently low [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], [Sc/Fe], [V/Fe], and [Co/Fe], show similar kinematic and [Ba/Eu] as other stars from the dissolved dwarf galaxy $Gaia$-Sausage-Enceladus. The $alpha$-element abundances and the iron-peak element abundances of the N-rich field stars with metallicities $-1.25 le {rm [Fe/H]} le -0.95$ show consistent values with Milky Way field stars rather than stars from dwarf galaxies, indicating that they were formed in situ. In addition, the neutron capture elements of N-rich field stars show that most of them could be enriched by asymptotic giant branch (AGB) stars with masses around $3 - 5, M_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا