ﻻ يوجد ملخص باللغة العربية
The rational solution of the Monty Hall problem unsettles many people. Most people, including the authors, think it feels wrong to switch the initial choice of one of the three doors, despite having fully accepted the mathematical proof for its superiority. Many people, if given the choice to switch, think the chances are fifty-fifty between their options, but still strongly prefer to stay with their initial choice. Is there some sense behind these irrational feelings? We entertain the possibility that intuition solves the problem of how to behave in a real game show, not in the abstract textbook version of the Monty Hall problem. A real showmaster sometimes plays evil, either to make the show more interesting, to save money, or because he is in a bad mood. A moody showmaster erases any information advantage the guest could extract by him opening other doors which drives the chance of the car being behind the chosen door towards fifty percent. Furthermore, the showmaster could try to read or manipulate the guests strategy to the guests disadvantage. Given this, the preference to stay with the initial choice turns out to be a very rational defense strategy of the shows guest against the threat of being manipulated by its host. Thus, the intuitive feelings most people have about the Monty Hall problem coincide with what would be a rational strategy for a real-world game show. Although these investigations are mainly intended to be an entertaining mathematical commentary on an information-theoretic puzzle, they touch on interesting psychological questions.
The Monty Hal problem is an attractive puzzle. It combines simple statement with answers that seem surprising to most audiences. The problem was thoroughly solved over two decades ago. Yet, more recent discussions indicate that the solution is incomp
The Monty Hall problem is the TV game scenario where you, the contestant, are presented with three doors, with a car hidden behind one and goats hidden behind the other two. After you select a door, the host (Monty Hall) opens a second door to reveal
Induction is a form of reasoning from the particular example to the general rule. However, establishing the truth of a general proposition is problematic, because it is always possible that a conflicting observation to occur. This problem is known as
We have previously presented a critique of the standard Marshallian theory of the firm, and developed an alternative formulation that better agreed with the results of simulation. An incorrect mathematical fact was used in our previous presentation.
We prove that a real number a greater than or equal to 2 is the irrationality exponent of some computable real number if and only if a is the upper limit of a computable sequence of rational numbers. Thus, there are computable real numbers whose irrationality exponent is not computable.